
Searching optimal feature subset using mutual
information

D. Huang and Tommy W.S.  Chow

Dept of Electronic Engineering, City university of Hong Kong

Abstract
A novel feature selection methodology is proposed with the concept of mutual
information. The proposed methodology effectively circumvents two major
problems in feature selection process: to identify the irrelevancy and
redundancy in the feature set, and to estimate the optimal feature subset for
classification task.

1. Introduction
Feature selection is a necessary preprocessing stage in classification especially when
one is required to manage large or even overwhelming quantities of data. A process of
feature selection should be guided by certain criteria. It is expected that feature
selection criteria can address two problems: to identify the salient features and to
estimate the optimal number of features from a large feature set. Many well-known
feature selection criteria are based on the statistics of input variables, i.e., the
probability [1] and the covariance of input variable [2]. To perform feature selection
by counting the data points is sensitive to noises [3]. The major shortcoming of the
covariance-based criteria is their sensitivity to data transformation. Also, the high
order statistics are not taken into account in [1,2]. Recently, the mutual information
(MI) is used by feature selection methods [4-7].  The advantages of MI have been
detailed in [4,8,9]. Generally, many MI-based feature selection methods [4,5] are a
forward selection process in which features are selected one by one. For this type of
forward selection process, MI between selected input variables and output class labels
monotonically increases because addition of input variables cannot decrease MI [10].
Also, with increasing of the number of selected features, the rate of increased MI
gradually decreases to zero where all relevant features have been selected. With these
characteristics, MI-based criteria can not only effectively select features but also
roughly estimate optimal feature subset. However, estimating MI is hard because of
requirement for the conditional density functions and the highly computational
complexity. Many MI-based feature selection algorithms [4-7] used histogram as
density estimator. In high dimensional space, histogram is neither effective nor
accuracy [13]. Accordingly, MIFS [4] and MIFS-U [5] estimated 2-dimensional MI
and analyzed high-dimensional MI with 2-dimensional MI. The experimental results
have shown their effectiveness. However, no direct estimate to high-dimensional MI
causes problems. First, as no monotonic criteria are available, these methods depend
on generalization performance to estimate optimal feature subset, which is highly
computationally demanding and classifier-dependent. Second, these methods are sub-
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optimal in the sense that selected features are individually, instead of globally,
considered. Third, no analytic guides are provided to avoid redundancy among the
selected features.
  In this paper, a novel toward-optimal feature selection methodology (OFS-MI) is
proposed. The proposed OFS-MI consists of two MI-based criteria and a forward
searching algorithm. The advantages of OFS-MI include: 1) these MI-based criteria
enable us systematically to estimate the optimal feature sets, which is very important
when the given data set contain huge quantities of features; 2) the direct estimate of
MI is able to give optimal solution; 3) minimizing the redundancy in selected feature
set can be operated in a principled way.

2. Quadratic MI and its estimation
In the proposed methodology, the quadratic MI [8] is used in order to greatly reduce
computational demanding,
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where X and C are continuous input variables and output class labels respectively.
The underlying probability density functions (pdf) are required to calculate (1). In
order to further reduce computational complexity, a supervised clustering algorithm is
proposed in this paper. The parameter minσ  is selected as 0.05 because all the data sets
used in this paper are all normalized to have zero means and unit variances.
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     If the class of x = il , iux → , recalculating ) ( ii uxallmeang ∈=
     Else 1+= mm ; New cluster mu , xgm = , =ml class of x ; }{\ xXX ← ; End  While

 Data selecting: Selected pattern set SX={};

    For every cluster iu , }  the{all ii uxX ∈= , ))max(var( ii X=σ , =iJ cardinality ( iX ).
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where � is determined from the covariance matrix of the overall data, h is the
bandwidth of kernel function. In this paper, I=

	
because all input data are

normalized to zero mean and unit variance. The “optimal”  bandwidth h in (2) is given
by Silverman [11], i.e., [ ] .)2/(4 )4/(1)4/(1 +−++= MM nMh

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 161-166



  With the property ),(),(),( 21212211 �+�−=�−�−
�

xxGdxxxGxxG , the quadratic MI

(1) can be calculated

2
)(

)()(),( 222

log);(
cx

xcxc
CS

V

VVV
CXI =

where     ��� ���� ∈ ∈ −== l
k kcisx kjsx jijic

xc
IsxsxGsxpsxpdxxcpV  class c class 

2
2),(

)2,()()(),( ,

( )����
= ∈== Nl

k klisx i
l
k kc

sxpcpV 1
2

 class 
2

2)(
)()( ,

�	�

−== isx jsx jijix

IsxsxGsxpsxpdxxpV )2,()()()( 2
2)(

,

[ ]��� �	���
∈ ∈ −== k kcisx isx kjsx ijijik kkcx IsxsxGsxpsxpsxpdxxpcpxcpV  class c class )( )2,()()())(()()(),(

3. OFS-MI
The proposed OFS-MI consists of two MI-based criteria and a forward searching
process. Feature relevancy criterion (FRC) is aimed at selecting the relevant features.
And the feature similarity criterion (FSC) is used to reduce the redundancy among the
selected feature set. Below, let F and S be the candidate feature set and the selected
feature set respectively. In order to determine the most relevant feature in F, all the
candidate features are ordered by using );,()( CSfIfFRC = . Because of the trivial
estimation error, adding input variables with little information about classification
may lead to the decrease of FRC. In the proposed methodology, the problem is
overcome by using the conservative stopping criteria. Feature similarity criterion
( ( ))(/);(maxarg);( ii fHffISfFSC = ) measures the similarity between feature f  and

subset )( SfS ∉ . When θ≥);( SfFSC , it can be concluded that f  is similar to S . In
this paper, 5.0=θ . FSC can be estimated by using the quadratic MI between two
continuous variables. The proposed OFS-MI may be stated as follows.
  Step 1. Set F ← “ initial feature set” , S ← Empty, the number of selected features 0=j ;

  Step 2. Set }{ }{ kk fSfFF ←← ,\ , kf maximizing FfCfIfFRC ∈∀= ),;()( ; 1=j , )( kj fFRCFRC =

  Step 3. Search Ff k ∈ maximizing );( CSfFRC k + , and }{ kfFF \← ;

  Step 4. Identify the redundancy.  If θ≥)( kfFSC , Goto Step 5.

   Otherwise, }{ kfS ← , )(,1 kj fFSCFSCjj =+=  Goto Step 5.

  Step 5. Stop the process.  If 11),max(arg −≤≤< jlFRCFRC lj ρ , Goto Step 6, shown as Fig 1 (a);

Otherwise, If rjj FRCFRCFRC λ≤− − 11 /)(  for stopn times consecutively, Goto Step 6, shown as Fig 1(b);

Otherwise, Goto Step 3.
  Step 6. Estimate the appropriate number of features for classification ( appnf _ ).

   rl appnfappnfappnf ___ ≤≤ where lappnf _ satisfied )max(_ FRCFRC lappnf l
×≥ λ , and 1_ −= jappnf r .

  Step 7. Output the set S and rl appnfappnfappnf ___ ≤≤ .

4. Evaluations and comparison
In this section, by using 3 simulation studies consisting of synthetic data and real data,
the proposed OFS-MI methodology is thoroughly examined in two perspectives:
effectiveness of feature selection and correctness of estimate on optimal feature
subset. A priori knowledge about the synthetic data can be used to evaluate the results
of feature selection. For the real data, the feature selection results are evaluated by
three feature evaluation indices. Two of them are classifier based. The K-NN rule and
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MLP network are adopted for this purpose. The MLP networks are multilayer
perceptrons with one hidden layer containing three neurons and trained by using fast
BP provided in Matlab. k=3 in the K-NN rule. Obviously, the better generalization
performance of classifier means the better feature subset. The other index, namely
class separability (cs), is classifier-free. With the similar idea [12], cs is calculated

by )( 1

bw SStracecs −= , where bS is the between class scatter matrix, and wS is the within
class scatter matrix. A higher value of the class separability index ensures that the
classes are well separated by their scatter means. The classification performances of
classifier are regarded as a more convinced evaluation on nf_app. The above
classifiers (MLP, KNN) are used for this task. In the section, the thresholds in the
stopping criteria of the proposed OFS-MI are set as 95.0=ρ , 9.0=lλ , 05.0=rλ ,

5=stopn . These parameters are not crucial because, with the proposed FRC, other

rational selections can work well even better.

4.1 LED dataset
The dataset of LED display domain [13] has 24 features, in which the first 7 features
determine the class label of a pattern, whilst the rest 17 features are irrelevant. In this
study, 400 data patterns were generated. In order to further examine the capabilities of
OFS-MI in dealing with irrelevant features and redundant features, additional 24
redundant features are added to increase the total number of feature to 48.  The 24
redundant features are based on the original 24 features added with noise, generated
on the basis of normal distribution )025.0,0(ℵ . In our simulation, it can be found that
only MIFS 5.0=β  and OFS-MI can give the correct answer for this dataset. When

1=β , MIFS selected the irrelevant features because the redundancy in the selected
features is taken excessive care.  Based on FRC as shown in Fig 2, it can be estimated
that 7_4 ≤≤ appnf , which is consistent with prior knowledge.

4.2 Sonar dataset
This dataset [13] consists of 208 patterns including 104 training and test patterns. It
has 60 input features and two output classes. FRC and its gradient are shown in Fig 3
(a, b). The results in Table 1 show that MLP-based and K-NN classifier together with
the proposed OFS-MI could achieve the best performances at all cases. And, class
separability criterion (cs) is much better than MIFS and MIFS-U. Using OFS-MI, it is
estimated that 15_9 ≤≤ appnf . There are up to 40 features selected by the OFS-MI in
order to validate the estimation result of 15_9 ≤≤ appnf . The generalization accuracy
values of K-NN, MLP are visualized in Fig 3(c). The curves suggest that all these
classifiers are able to generalize the best with 15_9 ≤≤ appnf , so the estimation
result on appnf _  is plausible.

4.3 cDNA data for ovarian cancer classification
There are 253 data samples and each sample contains 15154 features (genes) in this
dataset [14]. We partition the dataset into two parts, 150 for training and 103 for test.
For this dataset, there is no supervised clustering strategy because of the huge feature
set. Parzen window estimator is used as pdf estimator, i.e., the whole data is used as
selected dataset SX. In order to effectively dealing with the dataset containing a large
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quantity of feature, a special strategy is adopted with consideration that many features
are useless. In this study, the 15154 features are ranked on the base of I(f;C), and the
600 top features are selected into feature set F at step 1 for iterative feature selection
process. The MIFS and MIFS-U methodology were also tested on this dataset. They
were implemented in the same way with the proposed OFS-MI, i.e., the top 600
individually relevant features are selected into the feature set F before the iterative
feature selection. The comparisons of results are shown in Table 1. Obviously, the
proposed methodology is much more effective than other methods when handling this
huge dataset. Based on the curves in Fig 4(a,b), we have 10_6 ≤≤ appnf .And the
curves in Fig 4(c) suggest that the estimation on appnf _ is correct.
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Fig 3. The results of OFS-MI and the corresponding estimations on sonar dataset.
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Fig 4. The results of OFS-MI and the corresponding estimations on cDNA dataset

5. Discussions and Conclusion
The major objectives of this paper are to effectively select the features and to
determine the optimal or near-optimal feature subset. A novel feature selection
methodology, OFS-MI, is successfully developed by using two MI-based criteria. The
proposed OFS-MI was thoroughly examined by different classification problems. And
both priori knowledge and the generalization results corroborate that the estimation on
optimal feature subset is plausible. Also, the comparisons with other MI-based
methods show the effectiveness of the proposed OFS-MI.
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Sonar dataset

Class separability cs KNN generalization accuracy MLP generalization accuracy
nf

9 12 15 9 12 15 9 12 15

MIFS 0=β 0.93 1.02 1.20 0.779 0.846 0.846 0.783 0.793 0.750

MIFS 1=β 0.43 0.48 0.57 0.730 0.712 0.692 0.691 0.718 0.760

MIFS-U 1=β 0.98 1.05 1.05 0.759 0.759 0.759 0.686 0.710 0.764

OFS-MI 1.10 1.24 1.38 0.779 0.856 0.865 0.785 0.818 0.820
CDNA dataset

Class separability cs KNN generalization accuracy MLP generalization accuracy
nf

5 7 9 5 7 9 5 7 9

MIFS 0=β 10.3 14.9 16.4 0.950 0.971 0.971 0.967 0.891 0.980

MIFS 1=β 21.2 21.6 22.5 0.970 0.971 0.971 0.802 0.980 0.973

MIFS-U 1=β 19.5 21.9 24.8 0.971 0.971 0.971 0.980 0.980 0.982

OFS-MI 13.4 22.1 49.3 0.961 0.981 1.00 0.973 0.987 1.00

Table 1. The comparison of MIFS 0=β , MIFS 1=β , MIFS-U 1=β  and OFS-MI. nf is the number of

selected features. We outline in boldface the best values of indices at all cases.
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