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Abstract. Many researchers have studied integrate-and-fire neurons
and it has been shown that inhibitory connections among neurons can
generate synchronized activations, if transmission delays are introduced.
Transmission delays and coupling strength influence synchronization sig-
nificantly. In this paper, it is shown that initial phase differences among
neurons are also important factors to trigger synchronization. As a result,
synchrony conditions for integrate-and-fire neurons can be determined by
the relationship between the initial phase and transmission delays as well
as between the coupling strength and the phase lag.

1 Introduction

Local lateral inhibition plays an important role on synchronization [7]. Es-
pecially transmission delays greatly influence the synchronization. The exci-
tatory connections without transmission delays and without refractory period
were investigated [6, 1, 3]. Mirollo and Strogatz emphasized that the convex
monotonous function of membrane potentials is critically important for syn-
chronization. They showed the analysis for dynamic systems of phase differ-
ence, but did not consider transmission delays and refractory delays for spiking
neuron models. In fact, the desynchronizing effect of excitatory connections,
when they are involved with transmission delays, was reported [7, 5].

It has been shown that transmission delays greatly influence synchronization
for excitatory and inhibitory connections [2, 7, 4, 9]. Nischwitz and Gliinder
showed that some level of transmission delays can cause desynchronization and
also the synchrony performance is periodic with respect to transmission delays
in simulation.

Transmission delays have been so far considered as one of main important
factors for synchronization, but initial phases between oscillators have been
neglected. In this paper, it is proposed that synchronization is influenced by
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initial phase differences among spike neurons as well as transmission delays and
coupling strength. A formulation for their relationship is studied in this paper.

2 Model

In a integrate-and-fire neuron model, an oscillator integrates its membrane
potential and fires a spike, once it reaches its threshold, and then resets its
potential to zero. In this paper a simple model of temporal integration for
membrane potentials will be considered. It is a leaky integrate and fire neuron
with constant input.

N
1,
—&i =~ +c- I+ Z exis(zy)
k=1,k+#i

where s is the spike function to generate an impulse, N is the number of
neighbouring neurons, x; is the membrane potential, €; is a connection weight
from neuron k to ¢, and I is the input. When oscillator i reaches its threshold,
it will generate a spike and then its value will be reset to zero. This potential
function is periodic and its phase function is as follows:
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where T is the period for oscillators, g is the inverse function of f and g(f(¢4)) =
¢. If © <0, then g(x) =0, and if x > T, then g(z) = 1.

3 Analysis

We use the same analysis method shown by Mirollo and Strogatz [6]. Let ¢q, ¢35
denote initial phases for oscillators «, 3, respectively, where ¢, < ¢3. Then the
initial phase difference ngS is defined as ¢3 —¢,. Especially inhibitory connections
will be focused and we will first start inhibition with no conductance delay and
then discuss delayed inhibition.

3.1 Inhibition without transmission delay

Let € be the coupling strength between two oscillators. We define a function
w as w(¢p,e) = g(f(¢) —€). It represents a new phase caused by an inhibitory
action from an oscillator.

Two oscillators interact each other with inhibition weights. We assume
that two oscillators have the same period 7" and the same coupling strength e.
Oscillator § first reaches its threshold and emits a spike. The instantaneous
inhibition from oscillator # makes oscillator « drop its potential level by e.
Then oscillator o has the phase w(T — ¢,¢). After integration, oscillator «
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reaches its threshold and emits a spike. At this time it will cause oscillator
to have its phase w(T — w(T — ¢,¢€),€). Again oscillator 8 will integrate its
potential and fire, and the above process will be repeated.

For each firing, we can obtain phase difference functions as follows:

U1(¢) = T_w(T_¢>6)7 u2(¢) :w(u1(¢))6)

where u; (¢) is the phase difference after the first firing of oscillator 8, and uz(¢)
is the phase difference after the firing of oscillator a. For the next firings of two
oscillators, ¢ will be replaced by wu2(¢) which is the result of two consecutive
firings. We assume that synchronization has no phase difference.

We are interested in the fixed point of the iteration process, if it is available.
An iteration process changes ¢ into us(¢). Define the iteration function D as
D"t(¢) = D(D"™(¢)), where D(¢) = us(¢). For the fixed point, D(¢) = ¢.

The derivative for D can be calculated as %f) =w'(u1(9),€) - ui (), ”ti(f) =

w'(T — ¢, €). From the definition of w, w'(¢) = ¢'(f () —¢€) - f'(d) = %.
Since 0 < w'(¢) < 1 for every ¢ and € > 0, the derivative is 0 < D'(¢) < 1.
For nonlinear dynamic systems, the analytical criterion for stability is |D'| < 1
[8]. Hence, the iteration function D has a fixed point. We can observe that
us function for D has a fixed point around the middle of phase space for
small €, rather than at ¢ = 0. We can assert that the inhibitory connections
without any transmission delay will cause desynchronization. The fixed point
will change depending on the coupling strength e¢. If we choose € such that
u1(¢) = w(T — ¢,€) < T — ¢ for the first inhibitory action, synchronization will
occur. Otherwise, two oscillators will have desynchrony with constant phase
lag. This desynchrony result is already reported in some papers [7, 6].

3.2 Inhibition with transmission delays

Now we add transmission delays to inhibitory connections. We can classify the
conditions of delayed spike emission into several cases. The similar analysis
shown above will be applied. Let § be transmission delay and ngS be the initial
phase lag. The period T of integrate-and-fire neurons is scaled down to 1 for
convenience and the threshold for firing neuron is fixed to 1. For each case, we
obtain a series of phase difference functions as follows:

case 1. 6< L, $<

u1(¢) =6 —w(d —¢,e) ux(¢) =wi(¢) —¢ -3+ w(d+ e
case 2. < L, $>6

ui(@) =6 —w(T + 06— ¢,€) uz(d) =w(d+T +ui(d),e) — 6
case 3. 0>L, $<T -4

u1 (@) =6 —w(d — d,e) u2(p) =ur(d) — ¢ — 36 +w(d+ p,¢)
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Figure 1: Two oscillators with transmission delays (¢ = 0.3, & = 0.4) (a)
integrate-and-fire process (b) phase diagram for phase lag between oscillators

case 4. 6>%, ¢>T -6

u1 (@) =0 —w(d — g,e)  u2(p) =u1(@) —d—0+T +w(d+¢—T,e)
u3z(9) (¢) —ui(¢) + 6 —w(d — ui(¢),€)
usg(¢) = uz(¢) —u2(d) =0+ T +w(d+uxp) —T,e)

The functions uq, us are phase differences after each oscillator fires, respec-
tively. The function us will be iterated for the next series of firings. An example
of integrate-and-fire process and its phase diagram are shown in Figure 1.

For the case 1, the derivative with respect to ¢ is as follows:

ui(¢) =w'(6 —d,€) up(d) =ui(d) —1+w'(d+ oe)

It will lead to the condition —1 < w)(¢) < 1. If ua(¢) is used as an iteration
function D, it has a fixed point. If € is given such that w(é+ @, €) > ¢, then the
equation for us(¢) holds. Otherwise, one phase-advanced oscillator will become
phase-lagged and the other oscillator will be phase-advanced by ¢ —w(d+ ¢, €).
For the next firings, the phases of two oscillators are reversed and then applied
to the above equations (if us is negative, ¢ can be replaced by —us(¢) for the
next iteration instead of us(¢)). If there exists ¢ on interval (0,7") for a given
€ such that ua(¢) > 0, then two oscillators have a unique fixed point at ¢ = 0.
In other words, if us is monotonically decreasing on ¢, the fixed point does not
settle down at ¢ = 0. There are many fixed points for ¢ such that —us(¢) = ¢,
and their values depend upon e. From this property, we can estimate the
desynchrony condition! of €. The condition us(¢) < 0 for every ¢ should be
satisfied for the monotonic function, which can determine the range of € such
that € > €5, causes desynchrony. This desynchrony occurs when u; (¢) = ¢ and
u2(¢) < 0. By the desynchrony conditions of u(0) < 0 and u) < 0, we can
obtain €5, = f(4). Thus, € € (0,€e5,] = (0, f(4)] is a synchrony condition for

U2
us

We assume that the synchrony condition for phase lag is ¢ = 0 or ¢ = T.
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Figure 2: Fixed points on the coupling strength € (a) case 1 (circle: €5,) (b)
case 2 (circle: €5,) (c) case 3 (circle: €5,) (d) case 4 (circle: eg)

83 04 05

the case 1. For a given € > f(8), ¢* = g(¢) — d becomes a fixed? point for the
iteration map D as shown in Figure 2(a).

All the cases (case 1-4) have a fixed point by |D’' = ub| < 1, but they have
different attractor positions. If the attractor is located at ¢ = 0 or ¢ =T, it
can generate synchrony of oscillator neurons. Otherwise, it has desynchrony.
In case 2, ux(¢) also has a fixed point by its dynamic property |ub(¢)| < 1.
Especially for T — § < ¢3 < T, the phase difference after the first firing of an
oscillator becomes smaller than its transmission delay and thus the problem
reduces to case 1. If the initial phase has 6 < ¢ < T — §, oscillators tend
to be desynchronized by moving phase lags to around half the period. The
phase lag has its limit cycle and its fixed point is positioned around half the
period, but the fixed point depends on the coupling strength e. Large coupling
strength can help synchronization for two oscillators when the phase lag is
close to T — 6. If the first firing of a phase-advanced oscillator makes the
phase lag smaller than its transmission delay with the help of large coupling
strength, this problem can also reduce to the case 1 and thus it has a potential
of synchronization. We define the minimal coupling strength e, such that

2This will hold for ¢* < ¢ < § and for 0 < ¢ < ¢*, ¢ itself is a fixed point.
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[u1(@) =6 —w(T+6—¢,e5,)| < 6. It implies w(T + 6 — @, €5,) < 2. Thus, €5,
can be estimated as 1— f(24). If € € (es,, €5,] where €4, is determined in the case
1, then two oscillators will synchronize. For example, for a given delay § = 0.40,
€s, = 1 — f(20) = 0.1222 and €5, = f(§) = 0.5339. With coupling strength
€ € (0.1222,0.5339], two oscillators will synchronize regardless of initial phase.
Also there may exist some initial phase ¢ to synchronize oscillators with € <
1— £(20), if [u1(¢) =6 —w(T + § — ¢,¢€)| < 0.

In case 3, the iteration map has the same form as case 1. Its iteration
converges to a fixed point ¢ = 0 and thus leads to synchrony of two oscillators,
unless the coupling strength is too large. If there exists some interval (0, ¢) such
that D"(¢) = D(|D"1(¢)|) > 0, then it converges to ¢ = 0. The desynchrony
of oscillators occurs when ui(¢) = § and € > €5, = f(J). For example, € = 0.8
has a set of fixed points for ¢ € [0, g(es,) — d] = [0,0.093] where €5, = f().

In case 4, a series of firing continues and awaits inhibitory action for an
oscillator while the other oscillator experiences phase shift. It is because two
oscillators have relatively long transmission delays and phase lags. Thus, two
previous firing actions should be applied to calculate the next phase shift.

d1 = us(do) =w(d+¢o—T,¢) —w(d — ¢o,€) — o+ T

¢n = w(5 + ¢n—1 =T, 6) - w(6 - ¢n—1 - Zn—lae) - ¢n—1 +T — zp—1

where 2, = Usn—1 —Usp = Pp—1 + 0 —T —w(d + ¢p—1 — T, €). From the above
equation for D™ = ¢,,. we can obtain the following derivative:

D' = w(@+¢-Te)—w'(f—¢p—2z€)(-1-2")—1-2
G- ) -2

where 2’/ = 1 —w'(§ + ¢ — T,¢€). If we have 0 < 2z’ < 0.5, then we can obtain
stable fixed points by |D’| < 1. If w is continuous and its derivative is defined,
0 < 2’ < 0.5 holds within a range of coupling strength.

If ¢ < 0 for case 4, then it follows the formulation for the case 4. Otherwise,
the formulation of firing sequences depends on the result of u;, one transmission
delay after the first firing of a phase-advanced oscillator; if uy = |6 — w(T +
0 — (Z),e)| < T — ¢4, it follows the case 3 formulation. That is, the condition
with synchrony potential is w(T + 6 — ngS,e) > 20 — T, thus leading to € <
f(6) — f(20 = T) with ¢ > §. Thus, € € (0, f(§) — (20 — T)) will guarantee
synchronization for any ¢ > 0. Also there may exist some initial phase ¢ > ¢ to
synchronize oscillators with f(0) — f(20 —T) < e < 1—f(26—T). If iy > T -4,
then the firing sequence of two oscillators starts with a new phase lag w%; which
follows the case 4 formulation.

To obtain stable fixed points (¢* > 0) in case 4, we need a phase shift z such
that w(z,e) >0, ¢*+06 —T =z, 2z + ¢* < §, where ¢* is a fixed point. From
this relationship, we can find the maximal coupling strength €, = f (MT’T) SO
that € < ez, can imply local stability of iteration map. Figure 2(d) shows fixed
points depending on the coupling strength.
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Figure 3: Synchronization of 100 neurons (vertical bar: neuron spike) (a) § =0
(b) § =0.2T (c) § = 0.5T
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If we summarise the above result, the synchrony condition for coupling
strength is as follows:

case 1: e € (0, €5,] = (0, f(9)]

case 2: € € (€5, €5,)] = (1 = f(20), f(8)] with |uy| <6

case 3: e € (0, es,] = (0, f(8)]

case 4: €€ (€5, €55) = (0, f(8) — f(26=T)) with |u1| <T -4

It is so far shown that there are many synchrony conditions for transmission
delays less than period T'. The integrate-and-fire neuron model has a period T
and the phase difference between two oscillators are within 7. It is believed that
longer transmission delays have almost the same effect as transmission delays
within the period, though they are slow to update a new phase information. If
0 > T, we can represent it as 6 = n1" + 4. The synchrony condition for § is
similar to that for & which is smaller than T, unless § is too large. We can apply
the same rules shown above to long transmission delays. This kind of periodic
phenomenon has been shown in simulation [7, 5]. Figure 3 shows synchrony of
multiple neurons. We can infer from the analysis that the best transmission
delay is half the period of integrate-and-fire neurons. Even multiple neurons
with constant coupling strength, which is given as one over the number of
neighboring neurons, show the best performance for the delay of half the period.
In addition, strong coupling strength can accelerate the synchrony even if the
delay is different, from half the period.

Mirollo and Strogatz showed the formal analysis for excitatory connections
without transmission delay and the excitatory connections can lead to syn-
chrony [6]. When transmission delays are added to excitatory couplings, dy-
namic systems for iteration map have a fixed point not any more at ¢ = 0 or
¢ = T. Normally they have a fixed point around ¢ = ¢ for small coupling
strength. It means they have constant phase lag.

Some researchers have worked on post-synaptic models to demonstrate syn-
chrony [2]. From the analysis, it is presumed that their model function has a
convex shape with a decay function and dynamic thresholds. Their model is
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different from the simple model in this paper, but a sequence of firings will be
influenced by the derivative of phase lag functions in a similar way and thus
the synchrony will depend on coupling strength and initial phase lags.

4 Conclusion

The synchrony state is not always stable even for inhibitory synapses. It is
shown that it depends on the coupling strength and the initial phase lag be-
tween two neurons. For the future work we can apply formal analysis to the
synchrony of multiple neurons and also have an interest in the analysis of more
realistic model such as noisy potential and post-synaptic neuron models. Also
we have not considered refractory period in this paper. We will study how
refractory period can influence synchrony conditions.
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