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Abstract. Recently, a new method intended to realize conformal map-
pings has been published. Called Locally Linear Embedding (LLE), this
method can map high-dimensional data lying on a manifold to a represen-
tation of lower dimensionality that preserves the angles. Although LLE
is claimed to solve problems that are usually managed by neural networks
like Kohonen’s Self-Organizing Maps (SOMs), the method reduces to an
elegant eigenproblem with desirable properties (no parameter tuning, no
local minima, etc.). The purpose of this paper consists in comparing the
capabilities of LLE with a newly developed neural method called Isotop
and based on ideas like neighborhood preservation, which has been the
key of the SOMs’ success. To illustrate the differences between the alge-
braic and the neural approach, LLE and Isotop are first briefly described
and then compared with well known dimensionality reduction problems.

1 Introduction

Data coming from the real world, like the outputs of sensor arrays or pixels in
an image, are often difficult to understand because of their high dimensional-
ity. Fortunately, numerous methods intended to reduce the dimensionality of a
data set exist. The most known is obviously the Principal Component Analy-
sis [4] (PCA, or Karhunen-Loeve transform). The result of this simple algebraic
technique may be seen from several point of views, either as a variance preserv-
ing projection, or a minimal reconstruction error projection, or yet as distance
preserving projection. In the latter case, PCA is equivalent to classical met-
ric Multi-Dimensional Scaling [13] (MDS) under certain conditions. However,
as well PCA as MDS are strictly linear models that cannot unfold nonlinear
dependencies like in the first column of fig. 1. To achieve this goal, neural
variants of MDS have been developed like Sammon’s nonlinear mapping [10],
Curvilinear Component Analysis [1, 3] and related methods [6]. One step be-
yond lie Kohonen’s Self-Organizing Maps [5]: their power and elegance come
from the fact that they do not map data by preserving pairwise distances but
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by preserving neighborhood relations, allowing the mapping either to stretch
or shrink some region of the manifold when necessary. Recently, however,
neural methods have to compete with newly developed algebraic methods like
Isomap [12] for distance preservation and Locally Linear Embedding [9, 11] for
neighborhood preservation. An earlier paper [7] compared Isomap with CDA,
while this paper confronts LLE with Isotop [8]. After a brief description of
LLE in Section 2, Section 3 explains how Isotop works. Next, Section 4 shows
how both algorithms apply to simple toy examples. The comparison goes on in
Section 5 with the projection of a set of human faces. Finally, Section 6 draws
the conclusions.

2 Locally Linear Embedding

Locally Linear Embedding (LLE) is a nonlinear dimensionality reduction based
on neighborhood preservation. The mapping to a single low-dimensional coor-
dinate system is derived from the symmetries of locally linear reconstructions.

Assuming the d-dimensional data sampled from the manifold are stored in
n vectors xi, LLE replaces each data vector by a linear combination of the k

nearest other ones, leading to the reconstruction error:

E(W ) =

n
∑

i=1

‖xi −

n
∑

j=1

Wi,jxj‖
2 , (1)

where Wi,j are the unknowns, under a constraint of sparseness (Wi,j 6= 0
only for the k closest neighbors of each point) and an invariance constraint
(
∑n

j=1 Wi,j = 1). The Wi,j are then determined by solving a set of constrained
least squares problems. The constraints ensure that the reconstructions are
invariant to rotations, rescalings and translations. Once W is computed, an
error function similar to E(W ) can be written as:

φ(Y ) =
n
∑

i=1

‖yi −
n
∑

j=1

Wi,jyj‖
2 , (2)

where Wi,j are now fixed and the unknowns are the low-dimensional coordinates
yi associated to each xi. Under certain constraints, φ(Y ) has a unique global
minimum that can be computed as the solution of a sparse n × n eigenvalue
problem. More details about the algorithm can be found in [11].

3 Isotop

The basic idea behind Isotop consists in overcoming some of the limitations of
Kohonen’s Self-Organizing Maps when they are used for nonlinear mapping.
In this case, indeed, the vector quantization realized by the SOMs raises little
interest and the usually rectangular shape of the map seldom suits the shape
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of the manifold to be projected. Isotop addresses these issues in the following
way. Firstly, if the dataset contains numerous points, Isotop performs a vec-
tor quantization in order to reduce their number1. This optional step can be
achieved with simple methods, like LLoyd’s algorithm or Competitive Learn-
ing, for which no neighborhood relationships intervene between the prototypes.
Secondly, Isotop builds a graph structure where the nodes are the prototypes
and the creation of an arc depends on the pairwise distances between the pro-
totypes. For example, one can create arcs between one prototype and the k

nearest other ones. Another solution is to link one prototype with all other ones
lying closer than a given threshold ε. In both cases, the obtained graph struc-
ture tries to capture the neighborhood relationships in the manifold as they
are underlain by the prototypes. The application of this second step yields a
connected set of prototypes, comparable to the rectangular lattice of a SOM,
excepted that the shape of the structure has been dynamically woven according
to the shape and density of the data cloud. At this stage, the low-dimensional
representation of the manifold does not exist yet. To determine it, Isotop con-
centrates on the graph structure. A third step is thus begun by replacing the
high-dimensional coordinates of each prototype by low-dimensional ones, ini-
tialized to zero. Moreover, Isotop associates a Gaussian distribution of unit
variance with each prototype, centered on it . Then, Isotop iteratively draws a
point from this set of Gaussian distributions. Let gt be the coordinates of this
ramdomly generated point at time t and i the index of the prototype yi that
lies the closest from gt. Then, Isotop updates all prototypes yj according to
the rule:

yj ← yj + αtνt
j(g

t − yj) , (3)

where αt is a time-decreasing learning rate with values taken between 1 and 0;
the factor νt

j takes into account the previously build neighborhood relationships:

νt
j = exp

(

−
1

2

δ2
i,j

(λtEj∈N(i){‖xixj‖})2

)

, (4)

where λt is a time-decreasing neighborhood width, δi,j is the graph distance
computed for instance by Dijkstra’s algorithm [2] and Ej∈N(i){‖xixj‖} is the
mean Euclidean distance between the i-th prototype and its neighbors (the set
N(i) gives the indices of the neighbours for the i-th prototype). Intuitively,
the learning rule above unfolds the connected structure in a low-dimensional
space, trying to preserve the neighborhoods. As a side effect, the mixture of
Gaussian distributions evolves concurrently in order to capture the shape of the
manifold. A slightly different version of Isotop (only one Gaussian distribution)
is decribed with more details in [8].

1The quality of the quantization is not the key issue here: only its effect on the number
of points to be processed afterwards is important.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 527-534



4 LLE versus Isotop: toy examples

In order to illustrate the capabilities of both LLE and Isotop, the first column
of fig. 1 shows three simple manifolds taken from [11]. These are simple surfaces
embedded in a three-dimensional space; theoretically, they can be mapped on a
two-dimensional plane. For each manifold, thousand points are drawn (second

Figure 1: Projection of the S-curve, the twin peaks and the punctured sphere
with Isotop and LLE: the first column shows the complete manifold, the second
column shows points randomly drawn in the manifold; the third column shows
the results of LLE and the fourth one the results of Isotop; color levels are used
to identify the corresponding points in the third and fourth colums

column of fig. 1) before projection by LLE and Isotop (third and fourth columns
of fig. 1 respectively). The k parameter of LLE was set to 8. For Isotop, no
vector quantization was performed and k respectively took the values 6, 8 and
10 for the punctured sphere, the S-curve and the twin peaks. The learning rate
and neighborhood width of Isotop did not need any particular care.

As it is visually evident, both methods perform rather well. The shape of
the S-curve is well preserved, although LLE gives a square representation of the
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curved rectangle. Regarding the twin peaks, the square representation of Isotop
seems better than the triangular one of LLE. The situation is reversed for the
punctured sphere: although both methods tends to ‘square’ the sphere, LLE
performs better. Nevertheless, it is worth to mention that the three manifolds
have been artificially generated for LLE in [11] and that the samples of the
punctured sphere follow a well-specified and regular distribution. When applied
to other manifolds, like the bottle shown in the left side of fig. 2, LLE totally
fails, although the distribution increases towards the bottleneck in order to
make the stretching of the bottleneck possible. For all acceptable value of k,
LLE just delivers a linear projection of the bottle. The right part of fig. 2 shows
the result of Isotop (the graph structure is still visible). In this representation,
the bottleneck has been stretched and corresponds to the outer circle.

The example of the bottle shows an essential shortcoming of LLE: the ap-
pealing properties of the method (mathematical foundation, global optimizer)
actually hide a model that can only project a limited class of manifolds. Once
the manifold does not satisfy certain conditions (no conformal mapping ex-
ists between the manifold and a Euclidean space), the result of LLE looses
all its meaning. At the price of a more intuitive foundation and some more
parameterization, Isotop behaves in a smoother, more tolerant and robust way.

Figure 2: The bottle manifold: on the left, thousand samples are shown with
the graph structure of Isotop (k = 6); on the right, Isotop projects the graph
structure shown onto a plane, the outer circle corresponding to the stretched
bottleneck
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5 LLE versus Isotop: projection of faces

The authors of [11] have made available a dataset containing 1965 grayscale
pictures of a person’s face. Each picture is 20 pixels wide and 28 pixels high.
Although the manifold underlain by these data has probably an intrinsic di-
mensionality higher than two, LLE and and Isotop can project them to a plane
for visualization purpose. With k = 12, LLE gives the result shown in fig. 3,
quite similar to the figure in [11]. Figure 3 is in fact divided in 16 × 16 cells
that are filled with the picture corresponding to one of the points that has been
projected in; empty cells are blank. With k = 10 and default values for the
learning rate and neighborhood width, Isotop yields the result illustrated in
fig. 4.

Figure 3: Projection of the face dataset by LLE

Both methods give visually satisfying results. Looking at both figures from
top to bottom, one sees the head turning right to left (for LLE, this evolution
is only visible on the right part of the figure). Looking at the result of Isotop
from left to right, the smiling visage becomes unhappy or annoyed. Again, this
effect is less visible on the result of LLE. Globally, Isotop well highlights the
two dominating degrees of freedom in the dataset: the head left-right position
and the visage happy-unhappy expression. Compared to the result of LLE,
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Figure 4: Projection of the face dataset by Isotop

the representation made by Isotop is distributed more uniformly, giving more
importance to small details, like when the boy shows his tongue.

From a quantitative point of view, an mean organization error can be com-
puted as follows:

Eorg =
1

19652

1965
∑

i,j=1

|rank(xi, xj)− rank(yi, yj)|

rank(xi, xj)
, (5)

where the function rank(xi, xj) computes the rank of xj after sorting of all
distances ‖xi−xj‖ measured from a fixed xi. The denominator in the summed
terms of eq. 5 gives more importance to the right ranking of the closest neigh-
bors and Eorg equals zero when the ranks are perfectly preserved for all pairs of
points. The result of LLE in fig. 3 leads to Eorg = 3.4943 while Isotop reaches
the better value of 2.9179.
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6 Conclusion

LLE and Isotop can both project nonlinear manifolds. The advantages of LLE
reside in its theoretical foundations. Formulated as a simple and appealing
sparse eigenvalue problem, LLE can be implemented by robust and well known
algebraic procedures. However, LLE submits to these procedures sparse but
very large problems that often leads to convergence failure or important nu-
merical imprecisions. It is not uncommon that the shape of a projection made
by LLE totally changes after the removal or addition of a few samples.

On the other hand, Isotop is much slower but it does not rely on generic
procedures: the method works with a specifically designed neural algorithm.
Isotop can indeed fall in local minima and require some care for the parame-
terization. As a counterpart, Isotop can map a wider class of manifolds than
LLE.
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