
On Convergence Problems of the EM Algorithm 
for Finite Gaussian Mixtures 

 
 

Cédric Archambeau, John A. Lee, Michel Verleysen♣ 
 

Université catholique de Louvain – Microelectronics Laboratory 
Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium 

Phone: +32 10 47 80 61, Fax: +32 10 47 25 98 
E-mail: { archambeau, lee, verleysen} @dice.ucl.ac.be 

 
 
Abstract.  Efficient probability density function estimation is of primary 
interest in statistics.  A popular approach for achieving this is the use of finite 
Gaussian mixture models.  Based on the expectation-maximization algorithm, 
the maximum likelihood estimates of the model parameters can be iteratively 
computed in an elegant way.  Unfortunately, in some cases the algorithm is not 
converging properly because of numerical difficulties.  They are of two kinds: 
they can be associated to outliers or to repeated data samples.  In this paper, we 
trace and discuss their origin while providing some theoretical evidence.  As a 
matter of fact, both can be explained by the concept of isolation, which is 
leading to the width of the collapsing mixture component to become zero. 
 
 

1 Introduction 
 
Probability density function (PDF) estimation is a fundamental concept in statistics.  It 
provides a natural way to investigate the properties of a given data set and perform 
efficient data mining.  Areas of study, which have PDF estimation as a foundation, 
include machine learning, pattern recognition, neural networks, signal processing, 
computer vision, feature extraction, and many others. 
When we perform density estimation three alternatives can be considered [6] [2].  The 
first approach, known as parametric density estimation, assumes the data is drawn 
from a specific density model.  The model parameters are then fitted to the data.  
Unfortunately, an a priori choice of the PDF model is in practice not suited since it 
might provide a false representation of the true PDF. 
An alternative is to build non-parametric PDF estimators, as for example the Parzen 
windowing PDF estimator [5].  The PDF is estimated by placing a well-defined kernel 
function on each data point and then determining a common width � , also denoted as 
the smoothing parameter.  In practice, Gaussian kernels are often used.  The estimated 
PDF is defined as the sum of all the Gaussian kernels, multiplied by a scaling factor.  

                                                
♣ Michel Verleysen is a Senior Research Associate of the Belgian F.N.R.S. (National 
Fund for Scientific Research). 
 
This work was partially supported by the European Commission (grant IST-2000-
25145 OPTIVIP) and the Belgian F.M.S.R. (project 3.4590.02). 

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 99-106



By contrast to the previous methods, such techniques do not assume any functional 
form of the PDF and allow its shape to be entirely determined from the data. 
A third approach consists in using semi-parametric models.  As non-parametric 
techniques, they do not assume the a priori shape of the PDF to estimate.  However, 
unlike the non-parametric methods, the complexity of the model is fixed in advance, 
in order to avoid a prohibitive increase of the number of parameters with the size of 
the data set.  Finite mixture models are commonly used to serve this purpose.  A 
popular technique for approximating the maximum likelihood estimate (MLE) of the 
underlying PDF is the expectation-maximization (EM) algorithm. 
 
In this paper, we focus on the convergence problems encountered by EM while 
training finite Gaussian mixtures.  In section 2, we recall the EM algorithm and its 
relevance for computing the model parameters of Gaussian mixtures.  Next, we 
expose the convergence problems that might occur while using EM and clarify their 
origin.  Finally, in section 4, we illustrate and discuss the numerical difficulties by 
means of an artificial example. 
 
 
2 Finite Gaussian Mixtures 
 
Finite mixture distributions [4] can approximate any continuous PDF, provided the 
model has a sufficient number of components and provided the parameters of the 
model are chosen correctly.  The true PDF is approximated by a linear combination of 
M component densities: �
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where N is the number of data, p(x|j) the probability of x given the component 
distribution j and P(j) are the mixture proportions or priors.  The priors are non-
negative and must sum to one.  In practice, Gaussian kernels are often used for the 
component densities: 
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where cj and �

j are the centres and widths of the kernels respectively and d the 
dimension of the data space. 
By applying the EM algorithm [3], the MLEs of the model parameters P(j), cj and �

j 
can be computed iteratively while avoiding the complexities of a non-linear 
optimisation scheme.  Let us define the likelihood function: 

� ∏
=

=
N

n
np

1

)(x .    (3) 

Maximizing the likelihood function is then equivalent to finding the most probable 
PDF estimate provided the data set { }N

nn 1=x .  In order to compute the MLE of the 

likelihood function the EM operates in two stages.  First, in the E-step, the expected 
value of some “unobserved”  data is computed, using the current parameter estimates 
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and the observed data.  Here the “unobserved”  data are the data labels of the samples.  
They correspond to the identification number of the different mixture components and 
specify by which one the data were generated.  Subsequently, during the M-step, the 
expected values computed in the E-step are used to compute the MLE and the model 
parameters are updated.  Each iteration step t can be summarized as follows [2] [1] 
[4]: 
 
E-step: 
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where p(t) (xn) and p(t) (xn|j) are computed according to equation (1) and (2) 
respectively. 
 
M-step: 
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Note that in equation (4) P(t) (j|xn) corresponds to the posterior probability that xn is 
generated by component j provided that the data point xn is known. 
 
 
3 Convergence Problems of the EM Algorithm 
 
The convergence properties of the EM algorithm have been discussed in [8].  In 
theory, the EM is guaranteed to converge and it provides a MLE of the model 
parameters at a relatively fast convergence rate.  However, in practice, the algorithm 
frequently fails due to numerical difficulties, especially when the available data is 
sparsely distributed in the input space.  We have found that, in a number of cases, the 
variance of a kernel approaches zero, causing the EM to collapse (see section 4 for 
examples).  This phenomenon appears in two situations: 

1. Outliers occur in the database. 
2. Data repetitions occur among the data samples. 

The former was already partially traced by Yang and Chen [7].  Both numerical 
difficulties can be explained by the concept of isolation as will be described next. 
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3.1 Effect of Outliers 
 
First, let us consider we are nearby a local maximum of the likelihood function, where 
component j0 is close to an outlier xout.  Because of the exponentially decreasing 
nature of Gaussian functions, the latter is more likely to be generated only by j0, the 
other components being far from the isolated sample, whereas the other data points are 
unlikely to be generated by it: 
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Therefore, the only data point contributing significantly to the computation of the 
centre of j0 by equation (5) is the isolated sample: 

outj xc →
0

,     (9) 

where “ � ” stands for “tends to”. 
Next, equation (6) can be rewritten in expanded form according to (2) and (4): 
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where: 
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Suppose xn is far away from cj0 
(t).  Its contribution to the variance in (10) is then: 
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where �  and �  are positive scalars and yn

(t+1) can be rewritten as: 
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The first term of equation (12) is clearly zero in the limit.  Seeing that we are close to 
the local maximum of the likelihood function, � yn

 (t) << yn
 (t) and therefore the second 

term also tends to be zero.  Thus, when the centre of a kernel j0 approaches an isolated 
data point xout, only the outlier contributes to the width (the other terms being zero), so 
that at the equilibrium the width will be approximately: 

outjjoutj xccx →→−∝
000

  as  0
22σ .  (14) 

The isolation of a data point combined to the local character of Gaussian components 
makes the EM possibly collapse.  Actually, because of their exponential shape it is 
more likely that an outlier is generated by a highly improbable isolated component 
than that it was generated by a component consistent with the database. 
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3.2 Effect of Repetitions 
 
The physical isolation associated to an outlier can be extended to the concept of 
relative isolation of repeated data points.  Consider xrep is repeated K times and it is 
not an outlier.  Suppose we are close to a local maximum of the likelihood function 
where component j0 is close to xrep.  We can decompose equation (5) as follows: 
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Near the local maximum, it is more probable that xrep was generated by component j0 
than xn � rep was.  Therefore: 
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In addition, the contribution of xrep is multiplied by a positive factor K.  Thus, looking 
at equation (5), the position of the centre of j0 is meanly determined by the repeated 
sample: 
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Similarly, equation (6) can be reformulated as: 
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(18) 
If we are close to the local maximum, the first term in this sum is approximately zero.  
According to (16) the second term is small and it diminishes when the number of 
repetitions K > 1.  As a result, the width of component j0 is small with respect to the 
other mixture components.  Next, suppose the width shrinks a little at iteration t.  
Clearly, because of the exponentially decreasing shape of the component, a width 
reduction will lessen the influence of the neighbouring data points on the computation 
of the corresponding mixture parameters.  At the next computation of the E-step, the 
posterior probability that xn 
 rep is generated by component j0 will be reduced: 
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Thus, at iteration t+1, the width of the collapsing component will decrease again, 
reducing even more the contribution of the neighbouring samples to the width 
computation.  By snowball-effect the resulting width will be approximately: 
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where � K is the residual contribution of the neighbouring samples.  As in the previous 
section, the numerical difficulty is due to the local character of the mixture 
components. However, by contrast to the outlier case where the algorithm converged 
to a stable local maximum of the likelihood function, in this situation it is not the case 
as illustrated in the next section. 
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4 Experimental Results 
 
As shown in figure 1, the EM algorithm might fail computing a consistent MLE of the 
parameters of a finite Gaussian mixture model when we are facing a data set 
containing an outlier (left column) or a repeated sample (right column).  We have 
considered an artificial example containing a data set of 300 samples.  The data 
samples { } 300

1

=
=

N

nnx  are realizations of a random variable � n, of which the PDF is the 

sum of two 2D uniform distributions.  Five components were used in order to estimate 
the PDF of � n.  The position of the centres (marked by a cross) and their respective 
widths are drawn for successive iteration steps, starting from initialisation till the 
collapsing of one component of the mixture.  The repeated sample was chosen 
randomly among the data samples and repeated K = 0.05·N times.   
The log-likelihood function ln( � ) is represented in figure 2 in function of the number 
of iterations.  In the presence of an outlier (a) the algorithm converges to a stable local 
maximum, but gets trapped in a lower maximum than the optimal achievable MLE 
that can be attained in the regular case (d), i.e. when the database does not include any 
outlier or repeated sample.  In fact, the resulting model corresponds to the MLE of a 
finite mixture of the 4 non-collapsing Gaussian components. 
By contrast in the presence of a repeated sample, the EM seems first to converge to a 
poor local maximum involving a mixture of five components.  Subsequently, when the 
collapsing of the closest component of the repeated sample has started, the likelihood 
increases rapidly.  This is due to the significant contribution of the repeated sample to 
the likelihood, the estimated probability of the sample being close to unity.  A similar 
increase is observed when the outlier is repeated K times as shown in figure 2 (c).  
Finally, remark that a sparsely distributed data set favours the birth of the collapsing 
process in the case of repetitions. 
 
 
5 Conclusions 
 
In this paper, we have clarified a number of numerical difficulties that might occur 
while computing the MLE of a Gaussian mixture model by the EM algorithm.  
Experimentally, it has been observed that when the data set includes outliers and/or 
repeated samples, the algorithm may fail.  In section 3, we have suggested that, 
because of the local character of Gaussian kernels, some data points can be considered 
as isolated, leading the EM to collapse.  Indeed, we have demonstrated that once a 
component of the mixture is nearby an isolated point, the corresponding centre will be 
strongly attracted by it.  Meanwhile, because of the local character of the kernels, the 
neighbouring samples are not contributing to the width computation any more, 
leading, in the limit, to a zero value.  As a consequence, the resultant component 
collapses and the iterative scheme crashes. 
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Figure 1: Computation of the MLE of a finite Gaussian mixture by the EM in function 
of the number of iterations in the presence of (a) an outlier in the database or (b) a 
repeated data sample.  In both cases the algorithm is converging towards a local 
maximum non-representative of the data set and finally collapses. 

Outlier 

Repeated 
Sample 

(a) (b) 
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Figure 2: Log-likelihood function of the MLE of a finite Gaussian mixture model 
computed by EM in the presence of (a) an outlier in the database, (b) a repeated data 
sample or (c) both, and  (d) for a regular data set. 
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