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On different ensembles of kernel machines

Michiko Yamana, Hiroyuki Nakahara, Massimiliano Pontil,
and Shun-ichi Amari*

Abstract. We study some ensembles of kernel machines. Each machine
is first trained on a bootstraped subset of a whole dataset and then, they
together are combined linearly by optimizing an objective function. We
discuss two different objective functions inspired by boosting methods.
The present preliminary experiments show merits and drawbacks of our
approach in comparison to standard SVM and bagging SVM.

1. Introduction

Support Vector Machines (SVMs) [1] prove to show remarkable generalization
performances in many classification problems, compared to other learning al-
gorithms. However, SVMs suffer from the computational time of their training
algorithm, which scales as quadratic at least in the number of training examples.
A possibility to overcome this difficulty is to train many machines on a small
random subset of the original dataset. There are various ways to combine these
SVMs. [2] showed that by simply combining SVMs by average (Bagging), the
performance is nearly the same as that of a single SVM but with a significant gain
on stability of the ensemble [2]. It is thus natural to expect that a finer choice of
the coefficients in the linear combination of SVMs could improve these results.
In this paper, we present a systematic procedure to derive optimal combina-
tions of SVMs. This is based on optimization of objective functions (criterion),
which were used in boosting optimization methods [3]. Preliminary experiments
indicates some advantages in this approach. Other possible approaches which
we do not explore here are those based on Bayesian learning - see, e.g., [4] and
references therein.

2. Kernel Machines Ensembles
Let D be a training set, D = {(x;,:)}f_;, where (x;,y;) € R" x {-1,1}. A
kernel machine is a function of the form f(x) = Ele a;y;K(xi,x), where K is a

symmetric and positive definite kernel function, e.g. a Gaussian. The coefficients
«; are determined by solving the following optimization problem:

maXey Zle S(Oél) — % Zf,j:l aiajyiyilCij (1)

subject to: 0 <a; <C

where S(-) is a cost function, C' a constant, and we have defined KC;; = K(x;, x;).
SVM is a particular instance of Eq. (1) with the choice of S(a) = a. For SVM,
points for which a; # 0 are called support vectors.

Let us formulate an ensemble of kernel machines. Let T" be the number of ma-
chines. We generate T subsets of an original data set D, denoted by Dy, - - -, Dr.
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Each kernel machine, trained on D¢, is denoted by f: (t = 1,...,T). Once we
obtain these kernel machines (fi,---, fr), they are linearly combined to form

the ensemble
T

F(x) =) cfi(x). (2)

t=1

The coefficients {¢;} are determined by optimizing an objective function which
we discuss in Section 3. The coefficient ¢; may be constrained to be positive and
normalized to 1. Finally, we obtain the hypothesis as H(x) =sign(F'(x)).
There are two important issues to be investigated in order to achieve a good
performance of these ensembles, namely, (i) how to determine the number of
kernel machines, T', and (ii) how to divide the training set D into the subsets
D1,---,Dr. In the present study we randomly pick up subsets from D.

3. Optimizing Ensemble Coefficients

Coefficients {c;} are optimized by means of an iterative procedure with a given
objective function. Notably, a whole dataset is used in this step. We consider
two objective functions (criterion), inspired boosting methods [3]. Since our opti-
mization updates the coefficients simultaneously, our procedure can be regarded
as a parallel implementation of the boosting method discussed in [5].

1. Exponential Criterion. This criterion is defined by

¢
Je(c) =1In {Zexp (_yiF(Xi))} :

It is used by some boosting methods - see, e.g., the discussion in [3].

2. Maximum Likelihood Criterion. A second natural way to determine
the coefficients in Eq. (2) is through maximum likelihood. For convenience,
we denote the outputs of kernel machines by T—dimensional vector f(x) =
(f1(x), -, fr(x)). We then consider a likelihood function £(c) for the ensemble
machines f(x),

l l

£(e) = [T pwsr xi £x:) | ©) = [[ pelwi | £(x:),%0) p(Exi)oxi) (3)

i=1 =1

where p(f(x),x) is a joint probability density of f(x) and x. We assume the
following exponential form for p.(y | £(x), x):

Pe(y | £(x),%x) = exp(yF(x) — (e, x)) (4)

where ¢ (c, x) provides the normalization factor, which is determined by

exp(P(e,x)) = Y exp(yF(x)) = exp(Y_ e fe(x)) +exp(= Y eifi(x)). (5)

y=+1 t

Then, we can rewrite the likelihood function as

1
L(c) = g 1 + exp(—2y; F(x;)) ©
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where we omit the factor involving the joint probability density p(f(x),x) since
it is independent of c. Finally we define Jy(c) = —In £(c) and minimize Jy(c)
with respect to ¢. We briefly comment on the relation between the two above
criterion. Taking a Taylor series expansion of Jiy around F(x) = 0 up to second
order gives

Ju(e) = Zln [1+exp(=2y; F(x;))] = > [exp(—yiF(x;)) +In2 = 1], (7)

A A

Thus, Jum(c) is equivalent to Jg up to second order of F(x) [3]. To minimize
the objective functions (Jg or Jy), we use the steepest descent method which
consists in iteratively updating the parameter vector ¢, where an initial value c°
should be provided (e.g., the uniform solution ¢ = 1/T, for t = 1,---,T). The
n + 1 step is given by

"t =" — a" gradJ(c") (8)

which can be written in terms of the objective function as
J(c" T = J(c™ — a" gradJ(c")).

The parameter a” is determined by minimizing the r.h.s. of the above equation.
We skip the explicit formula of grad.J(c) = J(c)/0c for lack of space. We note
that another possible choice for grad.J(c) would be the natural gradient [7], but
we do not investigate this issue in the present paper.

3.1. Learning Convex Ensembles

We also consider minimizing Jg or Jy under the constraint >, ¢; =1, 0 < ¢ <
1. To this end we minimize the objective function

Ju(e;0) =—InLe)+0> o (9)

by means of the the above steepest descent method. The parameter 6 is a La-
grange multiplier which is determined in order to satisfy the constraint ), ¢; = 1.
To impose the condition ¢; > 0, we define the variable ¢; = (¢})? and minimize
Eq. (9) wrt. c¢;. We remark that such ensembles can be studied theoreti-
cally trough stability considerations. In the following we show the qualitative
idea of this approach - see [6, 2] for more information. Let F* be the ensemble
combination trained on the set D\{(z;,y;)}. The stability 3, of the ensemble
combination is the smallest positive real number such that

E[||F — F!||] < By, for every i€ {1,...,0}

where E denote the average w.r.t. the training set and ||-|| is the L; —norm w.r.t.
the probability of the input. The difference between test and training error,
denoted by A, is controlled by the stability parameter. Formally A = O(+/8¢/0)
with probability at least 1 — §. Likewise, we can define the stability of the
underlying learning algorithm, which we denote by f¢. In the case of Bagging,
[2] showed a link between 3y and 3,. Formally, it establishes that 8, = O(8rk/{).
The same result can be extended to the case of convex combinations. This
implies that if B¢ is sub-linear in #~!, the ensemble stability improves and, so, the
difference between test and training error decreases, preventing the occurrence
of overfitting. For SVM, 3, = C [6] (i.e. the stability is independent of ¢), where
C is the parameter defined in Problem (1).
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4. Experimental Results

We carried out experiments on three datasets from the UCI Benchmark Reposi-
tory maintained by G. Ritsch!: Breast-cancer (277 data, 200 used for training),
Banana (5300 data, used 400 training), and Diabetes (768 data, 468 used for
training). We compared bagging (Bag) and SVM to the proposed SVM ensem-
bles. These are: the exponential criterion (EC), the maximum likelihood crite-
rion (ML), EC with convex constrains (EC-C), and ML with convex constrains
(ML-C). Each of the T' machines in the ensemble was trained on a bootstrap set
of equal size. All SVMs in the ensemble as well as the single SVM were trained
using the same Gaussian kernel and the same parameter C'. For convenience
this parameter and the variance in the Gaussian were chosen so as to optimize
the single SVM. We studied how the training error and the test error behave in

Table 1: Experimental results (Diabetis dataset). See text for a description.

[Method/P | 2% | 3% | 4% [ % | 9% ]

Bag 24.3(1.48) | 24.3(1.48) | 22.4(0.97) | 22.4(1.18) | 21.3(0.61)
25.4(1.29) | 25.4(1.29) | 25.0(0.86) | 24.1(1.18) | 23.6(0.67)

EC 20.1(0.55) | 20.1(0.55) | 20.1(0.68) | 20.3(0.82) | 20.2(0.72)
25.0(0.79) | 25.0(0.79) | 24.8(0.54) | 24.5(1.00) | 24.2(0.80)

EC-C_ | 21.8(0.63) | 21.8(0.63) | 22.0(0.44) | 21.6(0.30) | 21.7(0.33)
22.8(0.75) | 22.8(0.75) | 23.2(0.99) | 22.9(0.76) | 22.9(0.59)

ML 19.0(0.62) | 19.0(0.62) | 19.2(0.51) | 19.4(0.63) | 19.5(0.62)
24.8(0.96) | 24.8(0.96) | 24.5(0.75) | 24.7(0.86) | 24.2(0.76)

ML-C | 21.4(0.46) | 21.4(0.46) | 21.1(0.43) | 21.0(0.43) | 20.6(0.37)
23.4(0.77) | 23.4(0.77) | 23.6(0.49) | 23.7(0.20) | 23.9(0.42)

relation to two factors, namely the number of machines, T', and the percentage
of samples used to train each machine, denoted by P. In all experiments, errors
were averaged over 10 random trials. Each cell in the tables below shows the
average training error with its standard deviation (upper line) and the average
test error with its standard deviation (lower line). Table 1 shows the effects of
imposing the convexity constraints on the coefficients (0 < ¢; < 1, ,¢; = 1)
in relation to different methods and different values of the percentage 15, on the
Diabetis dataset. Here T equals 30. Note that the ensemble SVMs without
constraints shows “too small” training errors. However, the test errors tend to
become bigger, which indicates the occurrence of “overfitting. This tendency
appears in both the maximum likelihood criterion and the exponential crite-
rion. We thus consider that the constraints is especially important for noisy
(hard) datasets. The same trend was observed on the Breast-cancer and Ba-
nana datasets. Table 2 shows the results of the comparison among bagging and
the two criterion with the convex constraint, over different values of T' and P on
the three datasets. The proposed criterion show better performances than that
of Bagging and better or nearly the same performance of a single SVM. (Can-
cer: training = 17.0, test = 26.0, C' = 15, ¢ = 5; Banana: training = 5.25, test
= 12.2, C' = 316, 0 = 1; Diabetes, training = 20.3, test = 23.7, C' = 100,0 = 20).
This finding is important since the computational complexity of an SVM scales
at least quadratically in ¢, while we expect the ensemble SVM to be nearly linear
in £. However, the dataset used in the present experiments were too small to
enlighten this effect. Looking again at Table 1, we note that an EC-C ensem-
ble with P = 2% achieves better performance than a single SVM. As a final
remark, note that the free parameters of the SVM (regularization and variance

L Available at http://ida.first.gmd.de/ raetsch/data/benchmarks.htm
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of the kernel) were optimized w.r.t. the single SVM architecture. Thus all the
presented results may have some bias in favor of the single SVM.

Table 2: Experimental results for Cancer (left), Banana (center), and Diabetis
(right). See text for a description.

(T/P | [ 5% [ 10% [ 20% [ 10% [ 20% [ 41% [ 5% [ 10% | 20% ]

10 Bag 248 | 23.8 22.5 11.8 | 853 | 7.63 228 | 22.0 | 21.0
28.4 | 274 25.3 || 15.1 | 13.1 11.9 25.1 24.1 24.2
EC-C | 246 | 23.0 22.2 10.0 | 8.50 | 7.63 21.6 | 220 | 21.7
27.0 | 25.8 | 26.6 13.4 | 12.5 11.8 24.4 23.7 | 23.7
ML-C | 239 | 22.7 | 215 9.75 [ 800 | 7.33 21.2 21.5 21.0
26.1 25.2 | 26.6 13.3 | 12.3 11.7 23.9 23.2 | 244
20 Bag 25.0 | 239 218 10.8 | 853 | 7.33 220 | 215 20.7
27.1 | 264 25.5 || 144 | 12.8 12.0 24.4 23.5 23.6
EC-C | 242 | 226 22.1 8.63 | 813 | 7.13 217 | 216 | 21.6
25.7 | 249 | 25.3 12.8 | 12.2 11.9 22.7 | 229 23.1
ML-C | 23.8 | 21.4 | 20.1 8.40 | 7.93 | 6.50 21.0 | 20.8 | 20.9
25.7 | 249 | 253 12.5 | 12.2 11.8 234 | 23.3 23.5
30 Bag 2421 235 22.0 9.35 [ 855 | 7.30 224 | 211 20.6
27.7 | 26.8 25.6 || 13.7 | 12.8 12.1 24.1 24.3 23.3
EC-C | 23.7 | 21.9 20.0 870 | 7.80 | 7.05 216 | 21.8 | 21I.5
25.6 | 243 | 245 || 12.6 | 12.5 11.8 22.9 22.7 | 234
ML-C | 23.3 | 20.9 19.6 8.08 | 7.65 | 6.63 21.0 | 20.7 | 20.6
25.5 24.5 24.7 || 12.3 | 12.5 11.9 23.7 | 23.8 23.5

5. Conclusions

We presented kernel machine ensembles which are based on the minimization
of boosting-like criterion such as the exponential criterion and maximum likeli-
hood criterion. An important feature of our approach is that the machines are
trained on small random subsets of an initial training set, which can be easily
implemented on a parallel computer. We also investigated the case that the ma-
chines are combined under the additional constraint that the coefficients form
a convex combination. Experimental results show that this constraint tends to
avoid overfitting, especially when the dataset contains a lot of noise. The exper-
iments provide some indications that the ensemble improves performance over
the single SVM that would be trained with the whole dataset, while potentially
reducing the computational complexity of training.

Acknowledgments: M.Y. would like to thank Masato Inoue for his help in
computer programming,.

References

[1] The nature of statistical learning theory V. N. Vapnik, Springer, 1995.

[2] “Leave-one-out Error, Stability, and Generalization of Voting Combinations of
Classifiers”, T. Evgeniou, M. Pontil, A. Elisseeff, Machine Learning, 2003.

[3] The elements of statistical learning: Data mining, inference, and prediction, T.
Hastie, R. Tibshirani, and J. H. Friedman, Springer, 2001.

[4] Least Squares Support Vector Machines, J.A.K. Suykens, T. Van Gestel, J. De
Brabanter, B. De Moor, J. Vandewalle, World Scientific, Singapore, 2002.

[6] “Boosting and maximum likelihood for exponential models”, G. Lebanon and J.
Lafferty, Proc. of NIPS’01, MIT Press, 2001.

[6] “Stability and generalization”, O. Bousquet and A. Elisseeff, J. of Machine Learn-
ing Research, 2 499-526, 2002.

[7] “Natural Gradient Works Efficiently in Learning”, S. Amari, Neural Comp. 10
251-276, 1998.





