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Abstract.  The locally linear embedding (LLE) algorithm is an un-
supervised technique recently proposed for nonlinear dimensionality re-
duction. In this paper, we describe its supervised variant (SLLE). This
is a conceptually new method, where class membership information is
used to map overlapping high dimensional data into disjoint clusters in
the embedded space. In experiments, we combined it with support vec-
tor machine (SVM) for classifying handwritten digits from the MNIST
database.

1 Introduction

Dimensionality reduction is an important preprocessing step before classifying
multidimensional data. The locally linear embedding (LLE) algorithm [3] [4]
has been recently proposed for this purpose. Its attractive properties are: 1)
only two parameters to be set, 2) optimizations not involving local minima, 3)
preservation of local geometry of high dimensional data in the embedded space,
4) a single global coordinate system of the embedded space.

In this paper, we describe a supervised variant of LLE, called the supervised
locally linear embedding (SLLE) algorithm [2]. Unlike LLE, SLLE projects
high dimensional data to the embedded space using class membership relations.
This allows obtaining well-separated clusters in the embedded space (if the
dimensionality of the embedded space is less by one than the number of classes
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[2]); moreover, each cluster is represented by only one point in the embedded
space.

To test SLLE, we coupled it with support vector machine (SVM) [5], since
SVM has provided excellent results in many tasks. SVM performs classifica-
tion by mapping data into a high dimensional space where classes are linearly
separable by hyperplanes. The combination of SLLE and SVM was applied for
recognizing handwritten digits of the MNIST database [1]. Our results bring
open questions for further research, which are also briefly discussed.

2 Locally linear embedding algorithm

As an input, LLE takes a matrix X of size D x N consisting of N columns
representing feature vectors. Its output is a matrix Y of size d x N (d < D),
where columns are coordinates of the feature vectors in the embedded space.
Further, the term point will stand for a vector either in RD or R space,
depending on the context.

The LLE algorithm contains the following three steps:

Step 1. K nearest neighbors are found for each point X; in RD, i =1,
2,..., N by using Euclidean distances to measure similarity. Then the proximity
matrix A of size K x N is built and its i-th column holds indices of K points,
which are the nearest to X; ( Ay; corresponds to the highest proximity).

Step 2. Assigning a weight to every pair of neighboring points. The
weights representing contributions to the reconstruction of a given point from
its nearest neighbors can be found by solving the optimization task [3]:

N N
(W)= 1 Xi= > WiyX; |, (1)
i=1 j=1

subject to constraints W;; = 0, if X; and X are not neighbors and Zjvzl Wi =
1. The latter condition enforces rotation, translation, and scaling invariance of
X; and its neighbors.

Step 3.Computing embedded coordinates Y; for each X;. Projections are
found by minimizing the embedding cost function for the fixed weights [3]:

N N
SOY) =D Yi=Y Wy Y |7, (2)
i=1 j=1

under the following constraints: iNZfil Y; Y, (normalized unit covariance)
and Zf\;l Y; = 0 (translation-invariant embedding), which provide a unique
solution. To find the matrix Y, a new matrix M = (I — W) (I — W) is
constructed and its d bottom eigenvectors starting from the second one are
computed. These eigenvectors span rows of Y.
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3 Supervised locally linear embedding algorithm

The essence of SLLE consists of the following. The whole data set U is divided
into subsets Wy, Uy, ..., Uy, so that ¥ = ¥ UW,U...UV,,, and ¥;NY; = 0, Vi # j.
Each ¥; holds the data of one class only and m is the total number of classes
known a priori. Let each ¥; be associated with its own data matrix =;, which
contains a set of N; D-dimensional feature vectors.

Each U, is treated separately from others as follows. For each data point
X; € Uy, we seek its K nearest neighbors belonging to ¥y, i.e., X; and its
neighbors are contained in the same class, while the nearest neighbors are cho-
sen from arbitrary classes in the LLE algorithm. When applied to all X;s € ¥y,
this procedure leads to a construction of the matrix A; of size K x N7, where
columns correspond to the points and rows correspond to the nearest neighbors.
By repeating the same for ¥s, ..., ¥,,, matrices Ao, ..., A,, are generated.

To distinguish points belonging to different classes, we add a shift to values
of all elements of the matrices starting from Ay. The shift for all elements of
A5 is equal to Ny, the shift for all elements of Az is N; 4+ Na, ..., and the shift
for all elements of A,, is 227:11 N;. Such a procedure guarantees that no two
matrices A; and A, will make reference to the same point.

Having set elements of all matrices, we concatenate A;’s into a single matrix
A whose size is K x N, where now N = 221 N;. We also concatenate =;’s
into a single matrix X whose size is D x N. After that, operations are carried
out as in case of LLE starting from Step 2.

At a first glance, it may be difficult to estimate the influence of the changed
procedure for the selection of nearest neighbors on the final embedding. The
change is small, yet significant, since the matrix A is used to construct another
matrix, W, which, in turn, determines embedded coordinates. As a result,
embeddings obtained with the unsupervised and supervised LLE are different.

4 Experiments

The MNIST database of handwritten digits [1] was used in experiments. It
consists of ten different classes of grayscale images (from ’0’ to '9’, each of 28 x 28
pixels in size) together with their class labels. The training and test sets consist
of 60,000 and 10,000 images, respectively. The number of images in the training
set varies from 5,842 to 6,742 per class and it is about 1,000 images per class in
the test set. Each image was transformed into a D-dimensional feature vector
(D = 28 x 28 = 784), where pixels values were used as features.

From the previous work [2] we learnt that for good data separation the
dimensionality of the embedded space, d, should be less by one than the number
of classes, L. Since we have ten classes, it is obvious that d should be set to
9. Moreover, there is no significant influence of the parameter K on good data
separation by SLLE; K = 18 was used in the experiments. The meaning of
”good separation” is that all points from the same class in the high dimensional
space are mapped into one point in the embedded space. Mathematically, it
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1) Map the training set into d-dimensional space (d = L — 1) by using SLLE.
2) Train SVM on L d-dimensional vectors, each of which represents
a certain class.
3) Map the test set by applying the non-parametric generalization [4].
4) Use the projection obtained in the previous step and the trained
SVM to classify the test data.

Figure 1: A procedure of the application of SLLE+SVM for classification.

Table 1: Confusion matrix in % when classifying in the original space.
Class 707 717 727 737 747 757 767 777 787 797
0’ 99.3| O 0.1 | 0.2 0 0.1 | 0.1 0 0.2 0

7 0 994 | 0.2 | 0.1 0 0.1 | 0.1 0.1 | 0.1 0
2’ 0.7 { 01 | 977 | 0.1 0.1 0 04 | 06 | 04 0
3 0 0 0.3 | 97.7 0 0.5 0 0.5 | 07 | 0.3

4 0.1 0 0.4 0 98.4 0 0.2 0 0 0.9
5’ 0.2 0 0 1.0 | 01 | 978 03 | 0.1 | 0.2 | 0.2
6’ 05 | 02 | 0.2 0 0.2 | 0.5 | 981 0 0.2 0

e 0 06 | 09 | 0.1 | 0.1 0 0 975 0.1 | 08
'8’ 0.4 0 02104 |03 |02 01|04 ]|976| 03
9’ 02 | 04 0 04 | 09 | 04 0 04 ] 03 | 970

means that the best solution for the minimization problem (2) was found, i.e.,
0(Y)=0.

The SVM with a polynomial kernel [y (X;, X;) + ¢]* was then used for data
classification in the high and low dimensional spaces, where £’s were set to 2
and 1 for the original and embedded spaces, respectively, 7’s and c’s were set
to 1 in both cases.

We first trained the SVM classifier using 60,000 images in the original space.
Then 10,000 images were fed to the classifier and the confusion matrix shown
in Table 1 was obtained (the average accuracy of recognition is 98.05%).

Next, we combine SLLE and SVM (see Figure 1) for classification. In this
case, the SVM training was very fast since L < N and the output of SLLE
immediately gave us support vectors. Table 2 represents the confusion matrix
obtained for the classification in the embedded space (the average accuracy is
equal to 97.06%).

To compare the performances of SVM and SLLE + SVM on a more difficult
data, the training and test sets were interchanged, i.e. the number of images
in the training set was 6 times less than that in the test set. Moreover, the
number of classes was reduced to five (’1’, ’3’, ’7’, '8’ and ’9’). These digits are
the most difficult to recognize due to their shape similarity. SVM was applied
to the data lying in the original space and in the 4D embedded space obtained
by SLLE, respectively. In the latter case the unseen data points were mapped
into the embedded space by the non-parametric generalization algorithm [4].
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Table 2: Confusion matrix in % when classifying in the embedded space.
Cla,SS ’07 71’ ’27 73’ 74’ ’57 76’ ’77 78’ 79’
0’ 99.3 | 0.6 0 0 0 0 0 0.1 0 0

7 0 99.7 1 0.2 | 0.1 0 0 0 0 0 0
2 06 | 1.3 | 973 0 0 0 0.1 | 0.7 | 0.1 0
'3’ 0 24 | 0.1 | 96.2 0 0.4 0 0.6 | 0.3 0
4 0.1 1.3 0 0 97.0 0 0.3 | 0.1 0 1.1
5 0.1 | 3.0 0 0.3 0 96.3 | 0.1 | 0.1 0 0
6’ 02 | 1.2 0 0 0.1 ] 01 | 984 0 0 0

e 0 19 | 0.5 0 0.1 0 0 97.1 0 0.4
'8’ 02 | 44 | 0.2 | 04 0 0.1 0 02 942 03
9’ 02 | 3.2 0 0.2 | 08 0 0 0.5 | 0.1 |95.0

The achieved accuracies were 96.59% and 95.86%, respectively.

Despite of these unfavorable circumstances, the combination SLLE + SVM
has its merits. SLLE arranges all points of the same class lying in the original
space into one point of the embedded space, i.e. a unique representation is ob-
tained for each class in the embedded space. This fact allows a cheaper way to
train SVM, since only one vector of dimensionality d per class is needed for this
stage. In our experiments when SVM was trained on the D-dimensional data,
7749 and 957 support vectors were found for ten and five class’ problems, re-
spectively, whereas these numbers are 10 and 5 after preprocessing with SLLE.
Moreover, in the latter case the data are linearly separable, i.e. only a lin-
ear SVM is needed, which means that a problem-dependent kernel tuning is
avoided.

One can see from the results of the two series of experiments that when the
recognition task becomes more difficult and the number of support vectors sig-
nificantly decreases, the accuracy of SVM falls more rapidly (98.05%—96.59% =
1.46%) than that of SLLE + SVM (97.06%—95.86% = 1.2%). Furthermore, the
difference between the accuracies of SVM and SLLE + SVM becomes smaller:
0.99% and 0.73% for 10 and for 5 classes, respectively. However, more research
on different data sets would be needed to confirm these observations.

5 Conclusion

The original LLE assumes that data lie on one manifold embedded in a high
dimensional space. In this paper, we extended the concept of LLE to the case
of multiple disjoint manifolds by proposing a supervised variant of LLE. It
can be used as a preprocessing step before classification in order to obtain a
compact representation for classes while reducing dimensionality. SLLE al-
lows computing support vectors for SVM without training SVM on the huge
amount of data. By comparing the performance of SVM and SLLE + SVM
for recognition of handwritten digits, SLLE + SVM failed to overcome SVM
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alone operating in the high dimensional space. Perhaps, this indicates that the
effect known as the curse of dimensionality did not manifest itself in the large
extent for the task considered. It also implies that further research is definitely
needed to establish how much SLLE (mapping + generalization) contributes
to the classification accuracy.

LLE (and moreover, SLLE) is a new technique and its efficient implemen-
tation for large-scale problems (N =~ 10° and higher) did not yet come into
existence. This is concerning both the nearest neighbor search and eigende-
composition. If an efficient solution for these two problems will be found, the
time spent on dimensionality reduction can be significantly shortened.
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