
A New Rule Extraction Algorithm based on
Interval Arithmetic

✝ Carlos Hernández-Espinosa ✝ Mercedes Fernández-Redondo ✝ Mamen
Ortiz-Gómez.

✝ Universidad Jaume I, Campus de Riu Sec, D. de Ingeniería y Ciencia de los

Computadores., 12071 Castellón, Spain. e-mail: espinosa@inf.uji.es

Abstract. In this paper we propose a new algorithm for rule extraction from a
trained Multilayer Feedforward network. The algorithm is based on an interval
arithmetic network inversion for particular target outputs. The types of rules
extracted are N-dimensional intervals in the input space. We have performed
experiments with four database and the results are very interesting. One rule
extracted by the algorithm can cover 86% of the neural network output and in
other cases 64 rules cover 100% of the neural network output.

1. Introduction

Neural networks have been applied to a great number of applications and one of the
most widely used neural network paradigms is Multilayer Feedforward. However, in
same applications it is not only sufficient a correct classification of an input, it is also
necessary an explanation of the classification [1]. One example is the medical
diagnosis field, in this case, we need to provide a correct classification of the
symptoms (the disease) and an explanation of the classification for the doctor.
A fundamental problem of neural networks is that the information they encode can
not be easily understood by humans, for example, it is difficult to give an explanation
on how they solve a particular problem.
One of the methods to solve the problem is rule extraction from a trained neural
network. With this method, we tray to convert the information contained in a neural
network in a set of rules that can be understood by a person.
There are many algorithm for rule extraction [2-5]. They differ in the type of rules
extracted and many other characteristics. However, they lack from a common
problem, the computational cost of the extraction of rules increases exponentially
with the number of parameters in the neural network (weights or neurons).
In this paper, we propose a new algorithm for rule extraction from a trained
Multilayer Feedforward network based on interval arithmetic. The algorithm is based
in a network inversion for a particular target using the interval arithmetic properties.
The type of rules extracted are N-dimensional intervals in the input space.
It has the problem of an exponentional computational cost increase with the number
of inputs in the neural network, but other parameters like the number of weights or
hidden units does not affect significantly the computational cost of the algorithm.

 This research work was supported by a Spanish CICYT project number TIC2000-1056.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 155-160

The organization of the paper is the following. In section two we describe the neural
network inversion method and the rule extraction algorithm. In section three we
present the experimental results in four databases and finally the conclusions are in
section four.

2. Theory

First, we will review the basic operations of interval arithmetic used in this paper.
They are sum of intervals, multiplication of an interval by a number and the
exponential [6].
Sum of intervals:

],[],[],[UULLULUL bababbaaBA ++=+=+ (1)

Where the superscripts L and U denote the lower and upper limits of the interval.
Product by a real number:

[] []
[]




<
≥

==
0·,·
0·,·

,··
mifamam
mifamam

aamAm LU

UL
UL

(2)

Exponential function:
()])exp(),[exp(],[exp)exp(ULUL aaaaA == (3)

With these operations, we can calculate an interval output of the Multilayer
Feedforward, for an interval input. The interval output of the hidden units are:

[]

j

Ninputs

wi

L
iPij

Ninputs

wi

U
iPij

U
jP

j

Ninputs

wi

U
iPij

Ninputs

wi

L
iPij

L
jP

U
jP

L
jPiP

Ninputs

i
jiPijjP

U
jP

L
jP

U
jP

L
jPjP

U
jP

L
jPjP

ijij

ijij

IwIwnet

IwIwnetwhere

netnetNetIwNetwhere

netfnetfnetnetfNetfHHH

θ

θ

θ

++=

++=

=+=

====

∑∑

∑∑

∑

<=≥=

<=≥=

=

0,1
,,

0,1
,,,

0,1
,,

0,1
,,,

,,,
1

,,,

,,,,,,,,

,,

,,

··

··

,·

])(),([)],([)(],[

(4)

Where f is the standard sigmoid function and IP,j=[IP,j
L,IP,j

U] the input interval.
Analogously for the interval outputs we have the equations 5.

k

Nhidden

wj

L
jPjk

Nhidden

wj

U
jPjk

U
kP

k

Nhidden

wj

U
jPjk

Nhidden

wj

L
jPjk

L
kP

U
kP

L
kPkP

U
kP

L
kPkp

jkjk

jkjk

HwHwnetand

HwHwnetwhere

netnetfNetfOOO

ξ

ξ

++=

++=

===

∑∑

∑∑

<=≥=

<=≥=

0,1
,,

0,1
,,,

0,1
,,

0,1
,,,

,,,,,,

,,

,,

··

··

)],([)(],[

(5)

Now we will describe the interval arithmetic inversion, it is basically the same
algorithm of neural network inversion [7], but in this case, the target will be an

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 155-160

interval vector and the error function will be the one of equation 6.

() (){ }∑
=

−+−=
Noutput

k

L
kp

L
kp

U
kp

U
kpp ototE

1
,,,,·

4
1

(6)

The inversion is accomplished by selecting and initial interval vector as the initial
input {[iL

1(0), iU
1(0)], [iL

2(0),iU
2(0)], …, [iL

N(0),iU
N(0)]} and applying an iterative

gradient descent algorithm similar to Backpropagation that will minimize the error
value by changing the initial input. The equations are basically in 7.

U
kP

U
kP

U
kPL

kP

L
kP

L
kP i

Errornini
i
Errorini

,
,,

,
,,)1()(;)1()(

∂
∂−−=

∂
∂−−= ηη

(7)

The values of the partial derivates are in equation 8 and 9:

()















−+−

−−+




−











+−−−−=
∂

∂

∑ ∑

∑∑

∑∑

<≥ ≥<

=

<<

≥≥

=

0,0 0,0

,,,·,,,,,

1
,,,,.,

0,0

,·,

0,0

,,,,
1

,,,,
,

,, ,,

,,

,,

)·1·()·1·(·

)·1·()·()·1·(

)·1·(··)1(·
2
1

liik liik

liik

liik

ww

i

ww

i
li

L
iP

L
iPikli

U
iP

U
iPik

Noutput

k

U
kP

U
kP

U
kP

U
kPli

U
iP

ww

i

U
iPik

ww

i
li

L
iP

L
iPik

Noutput

k

L
kP

L
kP

L
kP

L
kPL

kP

wHHwwHHw

oootwHHw

wHHwooot
i
Error

(8)

()















−+−

−−+




−











+−−−−=
∂

∂

∑ ∑

∑∑

∑∑

≥≥ <<

=

≥<

<≥

=

0,0 0,0

,,,·,,,,,

1
,,,,.,

0,0

,·,

0,0

,,,,
1

,,,,
,

,, ,,

,,

,,

)·1·()·1·(·

)·1·()·()·1·(

)·1·(··)1(·
2
1

liik liik

liik

liik

ww

i

ww

i
li

L
iP

L
iPikli

U
iP

U
iPik

Noutput

k

U
kP

U
kP

U
kP

U
kPli

U
iP

ww

i

U
iPik

ww

i
li

L
iP

L
iPik

Noutput

k

L
kP

L
kP

L
kP

L
kPU

kP

wHHwwHHw

oootwHHw

wHHwooot
i
Error

(9)

The type of rules we want to obtain are N-dimensional intervals in the input space like
the following:

If x1 ⊂ [aL
1,aU

1], x2 ⊂ [aL
2,aU

2], …, xN ⊂ [aL
N,aU

N] then {x1, x2, …, xN} ∈ Class K.
We should obtain the limits of the intervals ai, bi. They limit a N-dimensional interval
in the input space and the whole N-dimensional interval has to be included in a
classification class. An interval neural network inversion is used to get the intervals.
In order to obtain a rule, first, we will select a target value of the following type for
one classification class (for example, class number 2): {[0,0.5]Class1,
[0.5,1.0]Class2,[0,0.5]Class3, …, [0,0.5]ClassN}. An output vector inside the above interval
suppose a correct classification inside the class number 2, neuron number 2 is
activated and the rest neurons are not.
Second, we will apply the inversion algorithm for the target. We expect that the initial
input interval will evolve to give an interval whose output is inside the target interval
selected, in this case, the final input interval will correspond to a valid rule.
We have performed simulations with three types of initial intervals in a two
dimensional example. And the conclusions are that if the initial interval is a point

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 155-160

which corresponds to the correct classification of the initial point, during the
inversion, the point will expand to an interval, the final limits of the interval will
generally touch the borders of the classification class and the final results will
normally correspond to a valid rule. We can see several examples in Fig. 1.
It is obvious that we can exploit this
behavior of this type of initial intervals in
order to propose an algorithm which can
convert the information contained in the
neural network into rules. The algorithm
can be resumed as follows:

a) Select an initial point and
calculate the output of the
neural network for this input.

b) Select a target of the type
described above, this target
should agree with the
classification class of the output
of the neural network.

c) Apply the inversion algorithm
and extract a rule.

d) Select a new point which is not
included in the rules we have obtai
neural network for this new point.

e) Select a target which agrees with th
f) Apply the inversion algorithm and
g) If we have not cover the whole inpu

In order to test whether we have covered the
we can scan the input space with equally
included in the rules. The space between t
accuracy of the set of rules.
The problem of this scanning method is th
increase with the increase of the number of
number of inputs. The methods of input or
role to apply this algorithm.
There are other specific characteristics of
output interval inside the target described
classification of points by the rule. Also ano
overlapping among rules of different class
usually cover the total space of the neural ne
0.8, 0.7} is not in the initial target intervals b
if an input has this output it will not be cove
classification of the neural network is not cle

3. Experimental results

We have tested the neural network rule extr

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 155-160

Fig.1 Example of point expansion by interval
arithmetic inversion. A is the initial point, B is

the final interval.
ned before, and calculate the output of the

e output of the neural network.
extract a new rule.
t space go to step d).
 input space and select a new initial point
spaced points and test if the points are

he points will also influence in the final

at its yields a computational complexity
 inputs and it can not be used with a high
 feature selection will play an important

this method. A rule will always have an
 above, so there will not be incorrect
ther consequence is that there will not be
es. And finally, the set of rules will not
twork input, for example, the output {0.1,
ecause two output units are activated and
red. We can say that the points where the
ar are not cover by the rules.

action algorithm with four database from

the UCI repository of machine learning databases. The databases are Balance Scale
(BALANCE),), Liver Disorders (BUPA) and two of the Monk’s Problems (MONK1
and MONK 2). We have selected this databases because the input dimensionality is at
most six (http://www.ics.uci.edu/~mlearn/MLRepository.html).
We have applied the rule extraction algorithm to ten networks for each database
which were trained with different random initialization of weights and different
partition of data among training cross-validation and test.
In a rule extraction algorithm of this type we think that the two most important
criterion for comparison are the fidelity of the rules and the number of rules extracted.
By fidelity of rules we should understand how the results reproduced the behavior of
the neural network.
In table 1 we have the results for the four databases.

Table 1. Results of the rule extraction algorithm.
Database Prec.

Space
Percen-

tage
Not

Cover
Total

Percentage
Total
Not

Cover

Number
of Rules
(Nrule).

Nrule
minimum

Percentage
Nrule

minimum
BALANCE 0.2 74.15 25.84 65.57 34.42 331.3 323 74.96
BALANCE 0.13 83.14 16.86 73.75 26.25 745.9 671 82.04
BUPA 0.2 92.59 7.41 92.59 7.41 6357.1 64 100
BUPA 0.13 85.11 14.89 85.11 14.89 19289.5 1 89.27
MONK1 0.2 81.10 18.90 81.10 18.90 8899.5 5036 82.44
MONK1 0.13 81.31 18.69 81.31 18.69 47211.4 35842 82.56
MONK2 0.2 93.21 6.79 93.21 6.79 7288 64 100
MONK2 0.13 83.16 16.84 82.69 17.31 12943.1 1 87.57
The second column (Prec. Space) is the distance in the input space between the points
generated to construct the rules. A lower number means a higher number of points
and therefore a higher number of rules.
We have randomly generate 10.000 point inside the input space with the condition
that only one output unit is activated. The third column (Percentage) is the percentage
of point covered by the rules and the fourth column (Not Cover) the percentage of
points which were not cover.
Columns five and six are two percentages, in this case we have generated randomly
10.000 points without restriction inside the input space. The fifth column (Total
Percentage) is the percentage of points cover by the rules and the sixth column (Total
Not Cover) is the percentage of points not covered by the rules.
The seventh column (Number of Rules Nrule) is the mean number of rules generated
by the algorithm. Column number eight is the minimum number of rules generated for
a network and column number nine is the percentage of cover of this minimum
number of rules.
We can see that, in general, the number of rules increases with the precision of the
scanning space as it was expected. We can see very interesting results in the minimum
number of rules, for example for the databases BUPA and MONK2 64 rules are
enough to completely cover the input space. Also, in BUPA and MONK2 one rule
cover more that 85% of the input space.
As we commented before, the rules will only cover the input space where only one
output unit is activated and the rest are not. We can evaluate the maximum percentage

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 155-160

of point not covered, by subtracting the columns “Percentage” and “Total
Percentage”, they are 8.58% for the database BALANCE, 0.% for BUPA, 0% for
MONK1 and 0.47% for MONK2. As we can see this effect is not so important in the
experimental results.
The results of mean percentage of covering are in general good. But if we want to
increase the percentage of covering we can generate random points outside the
covering of the rules and extract new rules from this points. In a rule the initial point
is usually covered by the rule (see Fig. 1), therefore the new rule will usually cover
part of the input space not cover by the rest of the rules (the initial point is not
contained in any rule).
We have applied this technique with the databases BALANCE which got the lower
percentage of covering and the results are in Table 2.

Table 2. Results of the rule extraction algorithm.
Database Number Percen-

tage of
Points

Not
Cover

Total
Percentage

Total
Not

Cover

Number
of Rules
(Nrule).

Nrule
minimum

Percentage
Nrule

minimum
BALANCE 5.000 95.19 4.81 85.45 14.54 2963 2706 95.87

4. Conclusions

We have presented a new algorithm for rule extraction from a trained Multilayer
Feedforward neural network. The algorithm is based on an interval arithmetic
network inversion for particular interval target outputs. The type of rules extracted are
N-dimensional intervals in the input space. The experimental results are encouraging,
one rule extracted by the algorithm can cover 86% of the input space of the neural
network, and in other cases 64 rules cover 100% of the neural network.

References
1. A. Maren, C. Harston y R. Pap, Handbook of Neural Computing Applications, Academic

Press Inc., 1990.
2. Lu, H., Setiono, R., Liu, H., “Effective Data Mining Using Neural Networks”, IEEE

Trans. on Knowledge and Data Engineering, vol. 8, no. 6, pp.957-961, 1996.
3. Thrun, S., “Extracting Rules from Artificial Neural Networks with Distributed

Representations”, Advances in Neural Information Processing Systems 7, pp. 505-512,
1995.

4. Gupta, A., Lam, S.M., “Generalized Analytic Rule Extraction for Feedforward Neural
Networks”, IEEE Trans. on Knowledge and Data Engineering, vol. 11, no. 6, pp. 985-
991, 1999.

5. Narazaki, H., Shigaki, I., Watanabe, T., “A Method for Extracting Approximate Rules
from Neural Network”, Proc. of the IEEE Int. Conf. on Fuzzy Systems, vol. 4, pp. 1865-
1870, 1995.

6. Alefeld, G., Herzberger, J., Introduction to Interval Computations, Academic Press, New
York, 1983.

7. Linden, A. and Kinderman, J., “Inversion of Multilayer Nets”, in Proc. of the Int. Conf.
on Neural Networks, Washington D.C., vol. 2, pp. 425-30, 1989.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 155-160

