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Abstract.

In this paper we extend a form of kernel ridge regression for data char-
acterised by a heteroscedastic noise process (introduced in Foxall et al.
[1]) in order to provide approximately unbiased estimates of the condi-
tional variance of the target distribution. This is achieved by the use of
the leave-one-out cross-validation estimate of the conditional mean when
fitting the model of the conditional variance. The elimination of this bias
is demonstrated on synthetic dataset where the true conditional variance
is known.

It is well known that the minimisation of a sum-of-squares error (SSE)
metric corresponds to maximum likelihood estimation of the parameters of a
regression model, where the target data are assumed to be realisations of some
deterministic process that have been corrupted by additive Gaussian noise with
constant variance (i.e. a homoscedastic noise process) (e.g. Bishop [2]). Several
kernel learning methods based on the minimisation of a regularised sum-of-
squares have been proposed (e.g. [3–5]). In Foxall et al., we extend this family
of models to include a formulation that is optimal for a Gaussian noise process
with input-dependent (heteroscedastic) variance (c.f. [6]). In this paper, we
overcome a major shortcoming of existing approaches, by adopting the leave-
one-out cross-validation estimate of the conditional mean in fitting the model of
the conditional variance, resulting in almost unbiased predictive error bars. The
form of the model of the conditional mean allows a particularly efficient closed-
form implementation of the leave-one-out procedure. The unbiased nature of
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the estimates of conditional variance is demonstrated on a synthetic dataset
where the true conditional variance is known.

1 Heteroscedastic Kernel Ridge Regression

Suppose we are given data D = {xi, yi}`i=1 , xi ∈ X ⊂ Rd, yi ∈ Y ⊂ R,
where the targets, yi, are assumed to be the output of a deterministic sys-
tem, corrupted by an independent and identically distributed (i.i.d.) sample
drawn from a Gaussian noise process with a mean of zero and input dependent
variance, i.e. yi = µ(xi) + εi, εi ∼ N (0, σ(xi)). The conditional probability
density of target yi, given input vector xi is given by

p(yi|xi) =
1√

2πσ(xi)
exp

{

− [µ(xi)− yi]
2

2σ2(xi)

}

. (1)

The negative log-likelihood of D can then be written (omitting constant terms)
as

− logLD =
∑̀

i=1

{

log σ(xi) +
[µ(xi)− yi]

2

2σ2(xi)

}

. (2)

To model the data, we must estimate the functions µ(x) and σ(x). The condi-
tional mean is estimated by a linear model, µ(x) = wµ ·φµ(x)+bµ, constructed
in a fixed feature space, Fµ (φµ : X → Fµ). Space Fµ is induced by a pos-
itive definite “Mercer” kernel, Kµ : X × X → R, defining the inner product
Kµ(x,x′) = φµ(x) · φµ(x′). The superscript µ is used to denote entities used
to model the conditional mean µ(x). The standard deviation is a strictly posi-
tive quantity and so the logarithm of the standard deviation is estimated by a
second linear model, log σ(xi) = w

σ ·φσ(x)+bσ, similarly constructed in a fea-
ture space Fσ defined by Mercer kernel Kσ. Note that the output of this model
represents the natural logarithm of the standard deviation to ensure that the
corresponding estimate of conditional standard deviation is strictly positive. A
superscript σ is used to identify entities used to model the standard deviation,
σ(x). The parameters of the model (wµ, bµ,wσ and bσ) are determined by
minimising the objective function

L =
1

2
γµ‖wµ‖2 + 1

2
γσ‖wσ‖2 +

∑̀

i=1

{

log σ(xi) +
[µ(xi)− yi]

2

2σ2(xi)

}

.

Clearly this corresponds to quadratic regularisation of a maximum likelihood
cost function, where γµ and γσ are regularisation parameters, providing inde-
pendent control of the bias-variance trade-off [2] for the models of the condi-
tional mean and standard deviation. The optimal values of wµ and wσ can be
written as expansions over training patterns [7], such that

µ(x) =
∑̀

i=1

α
µ
i Kµ(x,xi) + bµ and log σ(x) =

∑̀

i=1

ασi Kσ(x,xi) + bσ.
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However the training algorithm for the heteroscedastic kernel ridge regression
model is somewhat more complex as the variance of the noise process is no
longer constant.

1.1 An Efficient Training Algorithm

The parameters, (αµ, bµ,ασ, bσ), of the conditional mean and standard de-
viation models can be found via an iterative re-weighted least squares (IRLS)
procedure (see e.g. [8]), alternating updates of the mean and standard deviation
models. If σ(xi), ∀i ∈ {1, 2, . . . , `} are held constant, the optimal parameters
of the model of the conditional mean, (αµ, bµ), are given by the minimiser of
the objective function

Lµ =
1

2
γµ‖wµ‖2 +

∑̀

i=1

ζi{µ(xi)− yi}2, (3)

where ζ−1
i = 2σ2(xi). This is equivalent to the objective function to be min-

imised in the weighted least-squares support vector machine [3], and so is min-
imised by the solution of the set of linear equations. Likewise, if µ(xi), ∀i ∈
{1, 2, . . . , `} are held constant, the optimal parameters of the model of the
conditional standard deviation, (ασ, bσ), are given by the minimiser of the
objective function

Lσ =
1

2
γσ‖wσ‖2 +

∑̀

i=1

[zi + ξi exp{−2zi}] , (4)

where ξi =
1
2 [µ(xi)−yi]2 and zi = wσ ·φσ(xi)+bσ =

∑`
j=1 α

σ
jKσ(xi,xj)+b

σ.
The model of the conditional standard deviation can then be updated efficiently
via a simple Newton-Raphson iterative process.

2 Eliminating Bias in the Conditional Variance

It is well known that maximum likelihood estimates of variance-like quantities
are biased (e.g. Bishop [2]). If the model of the conditional mean of the target
distribution over-fits the training data, the apparent variance of the noise pro-
cess acting on the training data is reduced. This means that the corresponding
estimate of the conditional variance will be unrealistically small. To overcome
this bias, the leave-one-out cross-validation estimate of the conditional mean is
substituted when updating the model of the conditional variance, via minimi-
sation of (4). It seems reasonable to suggest that the leave-one-out estimate of
the conditional mean will be less susceptible to over-fitting and so the estimated
conditional variance will be significantly less biased. It is straightforward to
show that the minimiser of the objective function for the model of the condi-
tional mean (3) is given by

p = (R+ZTdiag(ζ)Z)−1ZTdiag(ζ)y (5)
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where p = (αµT , bµ)T , Z = [Kµ
1], R =

[

γµ

2 K
µ, 0 ; 0

T , 0
]

. and 0 =

(0, 0, . . . , 0)T . The similarity of the system of linear equations (5) giving the
optimal parameters of the model of the conditional mean and the normal equa-
tions arising in multiple linear regression admits a particularly efficient imple-
mentation of the leave-one-out cross-validation procedure, well known in the
field of statistics [9]. For convenience, let U = diag(ζ)Z, C = R +UTZ and
d = UT t, such that p = C−1d. Furthermore, let Z(i), U (i) and y(i) represent

matrices Z, U and vector y with the ith observation deleted, then

C(i) = C − uizTi , and d(i) = d− yizi.

The inverse of the “downdated” matrix, C(i), can then be found with a com-
putational complexity of only O(`2) operations via the the Bartlett matrix
inversion formula [10],

C−1
(i) = C

−1 +
C−1uiz

T
i C

−1

1− zTi C−1ui
,

Let H = ZC−1UT represent the hat matrix (in multiple linear regression the
hat, or projection matrix H maps the desired output y onto the output of
the model ŷ = X(XXT )1XTy = Hy [9]). Following a straight-forward, but
somewhat lengthy series of algebraic manipulations, we obtain

{

µ(i)

}

i
= µi −

hii

1− hii
ri. (6)

where ri = ui − zTi p is the residual error for the ith training pattern for the
full model. The leave-one-out estimate of the mean of the target distribution
given by (6) can then be substituted when fitting the model of the conditional

standard deviation, such that ξi =
1
2

[

{µ(i)(xi)}i − yi
]2
.

3 Results

In this section we demonstrate that the leave-one-out kernel ridge regression
model provides almost unbiased estimates of the conditional standard deviation
using a synthetic regression problem, taken from Williams [6], in which the
true conditional standard deviation is known exactly. The univariate input
patterns, x, are drawn from a uniform distribution on the interval (0, π), the
corresponding targets, y, are draw from a univariate Normal distribution with
mean and variance that vary smoothly with x:

x ∼ U(0, π), and y ∼ N
(

sin

{

5x

2

}

sin

{

3x

2

}

,
1

100
+
1

4

[

1− sin
{

5x

2

}]2
)

.

Figure 1 (a) and (b) show the arithmetic mean of the predicted conditional
mean and ± one standard deviation credible interval for simple and leave-
one-out heteroscedastic kernel ridge regression models respectively, over 1000
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randomly generated datasets of 64 patterns each. A radial basis function kernel
was used, with width parameter, λ = 2, for both the model of the conditional
mean and the model of the conditional standard deviation, the regularisation
parameters were set as follows: γµ = γσ = 1. In both cases the fitted mean
is, on average, in good agreement with the true mean. Figure 1 (c) and (d)
show the arithmetic mean of the predicted conditional standard deviation for
the simple and leave-one-out heteroscedastic kernel ridge regression models.
The simple heteroscedastic kernel ridge regression model, on average, consis-
tently under-estimates the conditional standard deviation, and so the predicted
credible intervals are optimistically narrow. The mean predicted conditional
standard deviation for the leave-one-out heteroscedastic kernel ridge regression
model is very close to the true value. This suggests that the estimation of the
conditional standard deviation is (almost) unbiased as the the expected value
is approximately equal to the true value.

4 Summary

An improved heteroscedastic kernel ridge regression model is introduced, which
jointly estimates the conditional mean and variance of the target distribution,
eliminating the bias inherent in maximum likelihood estimates of conditional
variance through the use of the leave-one-out estimate of the conditional mean
in fitting the model of the conditional variance. The resulting estimates of
conditional variance are shown experimentally to be approximately unbiased
using a synthetic dataset where the true variance is known.
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