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Abstract. This paper presents a novel vector quantizer (VQ) design
algorithm for a burst error channel (BEC). The algorithm minimizes the
average distortion when the BEC is in normal state of operation, while
maintaining a minimum fidelity when the BEC is in the undesirable state.
An iterative design procedure is first derived in the algorithm for obtaining
a local optimal solution. A novel genetic scheme is then proposed for
attaining a near global optimal performance. Numerical results show that
the algorithm significantly outperforms the VQ techniques optimizing the
design only to the simple binary symmetric channels.

Keywords: Vector Quantization, Genetic Algorithm, Channel-Optimized
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1 Introduction

Vector quantizers (VQ’s) [2] have been found to be effective for data compression.
The techniques remove redundancy in the source, and retain useful information
for subsequent transmission. In the presence of channel noise, this removal of
redundancy may cause significant performance degradation. One way to achieve
some degree of robustness to channel errors is to employ the channel-optimized
VQ (COVQ)[1] techniques, which optimizes a VQ under a specific noisy channel
condition. The basic COVQ method [1, 3] constructs the codebook best matched
to a given binary symmetric channel (BSC), and is therefore termed the COVQ-
BSC technique. In many practical communication systems, the burst errors are
likely to occur. Since the simple BSC model is not suited for describing the bursty
error channels, the COVQ-BSC may not be effective for those communication
systems. As compared with the BSC model, the Gilbert-Elliot (G-E) model are
more effective for describing the burst error channels (BEC’s). In the model,
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there are two states: the good state is almost error free; the bad state has burst
errors. A BEC can then be specified by the bit error rate (BER) in both states,
and the state transition probabilities of the model. Therefore, to improve the
robustness of the VQ’s to burst errors, this paper proposes a novel COVQ design
algorithm, termed COVQ-BEC technique, which optimizes the codebook design
to the G-E models.

Unlike the COVQ-BSC scheme, where only one codebook is trained, the
COVQ-BEC technique designs two codebooks, with one for each state of the
given BEC. The selected codebook for encoding and decoding are dependent
on the state information observed at the transmitter and receiver, respectively.
Prior to the COVQ-BEC design, the algorithm allows the constraint of average
distortion of the bad state to be pre-specified. Under the constraint, the COVQ-
BEC minimizes the average distortion of the good state. The Lagrangian method
is used to solve this optimization problem. Therefore, the cost function to this
problem is the weighted sum of the average distortion of good and bad states.
The necessary conditions for encoder and decoder minimizing the cost function
are derived. Based on those necessary conditions, an iterative procedure is first
proposed for the training of the codebook for each state, yielding a local optimal
solution.

To obtain a near global optimal performance, a hybrid scheme combining
the iterative design procedure and genetic algorithm (GA) [5] is proposed. In-
spired by biological evolution, the GA has also been successfully used for global
optimization [3]. The GA contains a set of genetic strings, which are evaluated
by a fitness function. The fittest strings are then regenerated at the expense
of the others. Moreover, crossover and mutation are employed to obtain better
strings. The mutation operation changes individual elements of a string, and the
crossover operation interchanges parts between strings. In our hybrid scheme,
each string of the GA are the codebooks of the VQ. The resulting strings af-
ter the regeneration, crossover and mutation operations are used as the initial
codebooks for the iterative design procedure. The codebooks designed by the
iterative procedure are then used as the strings for the genetic operations of
the next generation. The same process is repeated until the convergence of the
algorithm. Numerical results show that the COVQ-BEC design based on the
hybrid scheme has superior performance over that of the iterative scheme. In
addition, the COVQ-BEC significantly outperforms the COVQ-BSC based on
the same BEC channels. Our COVQ-BEC schemes therefore can be an effective
alternative for robust transmission over burst noise channels.

2 The COVQ-BEC Algorithm

Figure 1 shows the basic structure of the VQ designed by the COVQ-BEC al-
gorithm. Let s1 and s2 denotes the good and bad states of the G-E model,
respectively. Let sj be the actual state of the channel, and let sm and sn be
the estimated state of the channel at the transmitter and receiver, respectively.
The transmitter (receiver) of the VQ has two encoders (decoders) with one for
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Figure 1: Basic structure of VQ designed by the COVQ-BEC algorithm.

each state. Let αm and βn be the encoder and decoder used by the transmit-
ter and receiver when their estimated state are sm and sn, respectively. Let
Bn = {y1

n, ...,yN
n } be the codebook used by βn, where yk

n is the k-th codeword
of Bn, and N is the number of codewords. All the codewords are with dimension
q.

Let x ∈ Rq be the q-dimensional source vector to be encoded. Given x and
the estimated state sm in the transmitter, an index i = αm(x) is generated and
delivered. Let Pj(k/i) be the probability that the receiver obtains index k, when
index i is transmitted, and the actual state of channel is sj . Since the estimated
state at the receiver is sn, after receiving the index k, the decoder βn reproduces
the corresponding codeword yk

n from its codebook Bn.
Let T = {xl, l = 1, ..., t} be the set of training vectors,where t is the number

of training vectors. Let Dj(m, n) be the average distortion of the VQ measured
on T , given that sj is the actual state of the channel, and sm and sn are the
estimated state of the channel at the transmitter and receiver, respectively. The
Dj(m, n) is then given by

Dj(m, n) =
1
t

t∑

l=1

N∑

k=1

Pj(k/αm(xl))d(xl,yk
n), j, m, n = 1, 2, (1)

where d(u,v) is the squared distance between vectors u and v.
Since the observation of channel states is subject to errors, let tmj (rnj) be

the state estimation probability that state sm (sn) is perceived at transmitter
(receiver) when the state of the channel is sj. Consequently, Dj , the average
distortion of the VQ when the channel is in state sj , is given by

Dj =
2∑

m=1

2∑

n=1

tmjrnjDj(m, n), j = 1, 2. (2)

Given a BEC described by the G-E model, the objective of the COVQ-BEC
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algorithm can be formulated as follows:

minimize D1, subject toD2 ≤ D̄. (3)

That is, the algorithm minimizes the average distortion of the good state s1,
subject to D̄, the constraint of the average distortion of the bad state s2. We
convert this constrained optimization problem to an unconstrained optimization
problem by solving the following Lagragian:

J = D1 + λD2, (4)

where λ ≥ 0 is the Lagrange multiplier.

2.1 The Iterative Design Procedure

Substituting eqs.(1)(2) into eq.(4), we can rewrite the cost function J as

J =
1
t

2∑

j=1

λj

2∑

m=1

2∑

n=1

tmjrnj

t∑

l=1

N∑

k=1

Pj(k/αm(xl))d(xl,yk
n). (5)

where λ1 = 1 and λ2 = λ. In our design, tmj , rnj , Pj(k/i) and λ should be
prespecified. The cost function J therefore is minimized by finding the optimal
αm and Bn, which can be accomplished by an iterative procedure shown below.

2.1.1 The optimal encoder design

Assume B1 and B2 are fixed. From eq.(5), we rewrite J =
∑2

m=1 J(m), where

J(m) =
1
t

2∑

j=1

λj

2∑

n=1

tmjrnj

t∑

l=1

N∑

k=1

Pj(k/αm(xl))d(xl,yk
n), m = 1, 2. (6)

Therefore, given a set of codebooks B1 and B2, the minimization of J is equiv-
alent to the independent minimization of each J(m), which depends only on
the encoder αm. From eq.(6), it follows that, given codebooks B1 and B2, the
optimal encoder αm should satisfy

αm(xl) = arg min
1≤i≤N

2∑

j=1

λj

2∑

n=1

tmjrnj

N∑

k=1

Pj(k/i)d(xl,yk
n), m = 1, 2. (7)

2.1.2 The optimal decoder design

Assume the encoders α1 and α2 are fixed. Since each decoder βn is completely
characterized by the codebook Bn, designing the optimal Bn is equivalent to
designing the optimal βn. For a given set of α1 and α2, it can be shown that
each codeword yk

n minimizing J is evaluated as

yk
n =

∑2
j=1 λj

∑2
m=1 tmjrnj

∑t
l=1 Pj(k/αm(xl))xl

∑2
j=1 λj

∑2
m=1 tmjrnj

∑t
l=1 Pj(k/αm(xl))

, n = 1, 2, k = 1, ..., N. (8)

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 267-274



2.1.3 The complete iterative design procedure

The eqs.(7) and (8) are the necessary conditions for the optimal encoder and
decoder, respectively. Based on eqs.(7) and (8), the complete iterative procedure
for COVQ-BEC design is listed below:

Step 0 Given tmj , rnj , Pj(k/i), λ, initial B1 and B2,
Set f = 0,J0 =∞, ε > 0.

Step 1 Fix current B1 and B2, find the optimal α1 and α2 using eq.(7).
Step 2 Fix current α1 and α2, find the optimal B1 and B2 using eq.(8).
Step 3 Set f ← f + 1.

Compute the new value of the Lagrangian J , denoted by Jf .
Step 4 If (Jf − Jf−1)/Jf < ε, then stop, else goto Step 1.

Since the sequence {Jf} is nonincreasing, and is bounded below by zero, the con-
vergence of the sequence is guaranteed. The resulting encoders and codebooks
after the convergence of {Jf} minimizes (locally) the cost function J . After the
design, the average distortions D1 and D2 of the VQ can be computed by eq.(2).
By repeating the iterative design procedure with different λ values, we obtain a
plot of attainable D1 versus D2.

2.2 The Hybrid Design Procedure

The objective of the hybrid design procedure is to solve the problem of local
optima for the minimization of cost function J by combining the iterative de-
sign procedure with the GA. In the hybrid scheme, there are P genetic strings
for the genetic operation. Each string r represents a set of 2N codewords
{y1

1, ...,y
N
1 ,y1

2, ...,y
N
2 }r, where {y1

n, ...,yN
n } are the codewords of the codebook

Bn. Let S(k) and C(k) denote the set of P strings and the value of current
minimum J value after the execution of the k-th iteration of hybrid scheme,
respectively. Let s∗ be the current optimum string during the course of hybrid
scheme. In the initial step of hybrid scheme, we let C(0) =∞, and initialize s∗

as null. In addition, we can randomly select vectors from training data as the
codewords of strings in S(0).

During the course of hybrid design for minimizing J given a fixed λ, suppose
that the (k − 1)-th iteration is completed, and the execution of the k-th (note
that k ≥ 1) is to be done. We then perform the following genetic operations
sequentially on the strings in S(k − 1).

Regeneration: Since each string in S(k − 1) for the genetic operations is
in fact a VQ, their corresponding J value can be computed using eq.(5). The
inverse of J is used as fitness function for each string. The regeneration process
is then conducted using the roulette-wheel technique [5]. That is, for offspring
generation, we spin a simulated biased roulette wheel whose slots have different
sizes proportional to the fitness values of the individual strings. The results
of the spin gives a reproduction candidate. Once a string has been selected
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for reproduction, an exact replica of it is made as a regeneration string. This
regeneration string will then be used for crossover and mutation. In our, P
regeneration strings are created after the regeneration operation.

Crossover: On each regeneration string r, {y1
1, ...,y

N
1 ,y1

2, ...,y
N
2 }r, two-

point crossover is applied with probability Pc. Out of the total population, a
partner string r̂, {ŷ1

1, ..., ŷ
N
1 , ŷ1

2, ..., ŷ
N
2 }r̂ is randomly chosen. Then two integer

random numbers h1 and h2 between 1 and N are generated. The strings r and
r̂ are mutually exchanged in accordance with the following equation:

{y1
1, ...,y

N
1 ,y1

2, ...,y
N
2 }r → {y1

1, ...,y
h1
1 , ŷh1+1

1 , ..., ŷN
1 ,y1

2, ...,y
h2
2 , ŷh2+1

2 , ..., ŷN
2 }r

{ŷ1
1, ..., ŷ

N
1 , ŷ1

2, ..., ŷ
N
2 }r̂ → {ŷ1

1, ..., ŷ
h1
1 ,yh1+1

1 , ...,yN
1 , ŷ1

2, ..., ŷ
h2
2 ,yh2+1

2 , ...,yN
2 }r̂

Mutation: Mutation is performed on each codeword yk
n of each string with

a small probability Pm. From yk
n, one of the q components is chosen at random.

Then a random number, taking the binary values b or −b, is generated, and is
added to the chosen component.

The total of these three operations is called a generation. After a generation,
we then apply the iterative design procedure to each string with the codewords in
that string as the initial conditions. The P strings after the iterative design are
then the strings of the set S(k). The J value of each string in S(k) is computed.
Let r∗ be the string in S(k) having minimum J value, and J∗ be the J value
of r∗. We then compare J∗ with C(k − 1). If J∗ is smaller than C(k − 1),
then C(k) ← J∗, and s∗ ← r∗. Otherwise, C(k) ← C(k − 1), and the current
optimum string s∗ is retained the same. This completes the execution of the
k-th iteration for the hybrid scheme.

The iteration continues until the convergence of the sequence {C(k)}. In
practice, we stop the design algorithm after the observation of I consecutive
iterations yielding identical C(k) value. The current optimum string s∗ after
the completion of hybrid scheme is then the desired codebooks. To show the
convergence of {C(k)}, we first observe that the sequence is nonincreasing. In
addition, from eq.(5), it follows that C(k) > 0 for all integers k > 0. Therefore,
{C(k)} is bounded below, and is guaranteed to converge.

3 Simulation Results

This section presents some numerical results of the COVQ-BEC algorithm. Two
Gauss-Markov sources with identical parameter ρ = 0.9 and identical length
(96000 samples) are used for the VQ training and performance measurement,
respectively. The dimension of vector is q = 8. The number of training and test
vectors therefore are 12000. Two cases are considered for the implementation of
the COVQ-BEC: both transmitter and receiver do not have state information
(denoted as COVQ-BEC I), and only receiver has accurate state information
(denoted as COVQ-BEC II). The number of codewords of each state for the
COVQ-BEC design is N = 32. The BEC considered in this experiment is
modeled by the G-E channel with BER ε1 = 0.0001 in state s1, and BER ε2 =
0.1 in the state s2. The state transition probabilities are given by p11 = 0.9,
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Figure 2: Performance of COVQ-BEC I and II realized by iterative and hybrid
schemes: (a) COVQ-BEC I,(b) COVQ-BEC II.

p21 = 0.1, p12 = 0.9 and p22 = 0.1, where pij denotes the probability that given
the current state of the channel is sj , the next state of the channel will be si.
Let pj be the probability that the channel is in state sj . Therefore, p1 = 0.9 and
p2 = 0.1. The average BER of the BEC channel, ε, is then given by ε = 0.01009.

Figure 2 shows the location of the sample points of the iterative and hybrid
schemes for the two cases in the D1-D2 plane. Different sample points are
obtained by varying λ values in eq.(4). We set P = 6, Pc = 0.8 and Pm = 0.3
for the implementation of the hybrid scheme. Form Figure 2, we observe that
the hybrid scheme outperforms the iterative scheme for each case. The hybrid
scheme has superior performance because it can attain a near global optimal
performance using the GA algorithm. On the contrary, the iterative scheme
may fall into a poor local optima when improper sets of initial codewords are
chosen. Figure 3 compares the performance of the COVQ-BEC I and II realized
by the hybrid scheme. The performance of the COVQ-BSC is also included for
the comparison purpose. The implementation of the COVQ-BSC is optimized
to the BSC with the same average BER ε = 0.01009 as that of the BEC. From
the figure, it is observed that the COVQ-BEC II outperforms COVQ-BEC I and
the COVQ-BSC. This is because the state information is available at receiver in
that case. The performance of the COVQ-BEC may be degraded when the state
information become unavailable. Nevertheless, even when both the transmitter
and receiver do not have state information, the COVQ-BEC still outperforms
COVQ-BSC. As shown in the figure, when D2 is 26.81, the D1 of the COVQ-BEC
II is 5.67, which is lower than that of COVQ-BSC by 0.68.

4 Conclusion

Numerical results have shown that the performance of the COVQ-BEC can be
effectively improved using the GA algorithm. In addition, its performance can
be enhanced further when channel status information becomes available. Given
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Figure 3: Comparison of COVQ-BEC I,II and COVQ-BSC schemes.

the same BEC channel, the COVQ-BEC algorithm also significantly outperforms
the COVQ-BSC algorithm even when the state observation is noisy. The COVQ-
BEC therefore can be an attractive alternative for the applications where the
robust transmission over burst error channels are desired.
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