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Abstract. We propose a self organizing map (SOM) for sequences by
extending standard SOM by two features, the recursive update of Sper-
duti [7] and the hyperbolic neighborhood of Ritter [5]. While the former
integrates the currently presented item and recent map activations, the
latter allows representation of temporally possibly exponentially growing
sequence diversification. Discrete and real-valued sequences can be pro-
cessed efficiently with this method as demonstrated in three experiments.

1 Introduction
Unsupervised clustering by using the Kohonen SOM [4] is a standard tool for
the exploration of high dimensional data and its topological structure: typically,
a two dimensional Euclidean grid of neurons is adapted to the data space, more
or less preserving the data topology. If temporal or spatial data are dealt with
such as time series, language data, or DNA strings, sequences of a priori unre-
stricted length constitute a natural domain for data analysis and classification.
Unfortunately, the temporal scope is unknown in most cases, and therefore
fixed vector dimensions, as used for standard SOM, cannot be applied. Several
extensions of SOM to sequences have been proposed: time-window techniques
or representation by statistical features allow processing with standard meth-
ods [4]. Thereby, information might get lost and adaptation of the metric or
grid is advisable [5, 6, 8]. Various approaches extend SOM by recurrent dy-
namics: the temporal Kohonen map (TKM) and the recurrent SOM (RSOM)
incorporate the biologically plausible dynamics of leaky integrators [1, 9]. The
recursive SOM (recSOM) and the SOM for structured data (SOMSD) are based
on a richer representation of the respective time context, the activation profile
of the entire map or the index of the most recent winner, respectively [2, 10].
A general framework for these dynamics has been proposed in [3].

We will here focus on the compact and flexible representation of time con-
text given by the winning location of the map for the previously presented
sequence element as proposed in [2]. Since this approach heavily relies on
an adequate grid topology, we extend this approach to general, possibly non-
Euclidean, triangular grid structures. In particular, we combine a hyperbolic
grid and a last-winner-in-grid reference to process three types of sequences: the
Mackey-Glass series, binary automata, and a benchmark Reber grammar.

2 Unsupervised processing of sequences
Given a sequence s = (s1, . . . , st) with entries in Rn, the TKM computes
the distance of s from neuron nj labeled with wj ∈ Rn as leaky integration
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dTKM(s, nj) =
∑t−1

i=0 η(1−η)i‖st−i −wj‖2 where η ∈ (0, 1) [1]. The RSOM first
integrates the directions and afterwards computes the distance [9]. In both
cases, one can analytically compute weights with optimum response to a given
sequence s: w =

∑t−1
i=0(1 − η)ist−i/

∑t−1
i=0(1 − η)i. This explains the encoding

scheme of TKM and RSOM. For example, in case of binary sequences with
η ≤ 0.5, the representation of fixed length sequences corresponds to a fractal
encoding in [0, 1], e.g. sequences of length three are represented by 8 consecutive
points encoding 000, 001, 010, . . . , 111. This encoding, although reasonable,
points out the limitation of TKM and RSOM: representations for sequences
of different length are mixed; e.g. 0 gives optimum response to sequences with
entries only 0 and arbitrary length. Furthermore, the maximum length of se-
quences which can be represented does not depend on the size of the grid, but
on the range of w, i.e. the range of sequence entries.

The RecSOM uses a more detailed representation of context [10]: each
neuron nj has got a weight wj ∈ Rn representing the recent sequence en-
try and a vector cj ∈ RN , N denoting the number of neurons, which rep-
resents the contextual map activation of all neurons in the previous time
step. Distance d is recursively computed by dRecSOM((s1, . . . , st), nj) = η1‖st −
wj‖2 +η2‖CRecSOM(s1, . . . , st−1)−cj‖2 where η1, η2 > 0. Thereby, CRecSOM(s) =
(exp(−dRecSOM(s, ni)))N

i=1 constitutes the context. Since the entire map activa-
tion is considered, sequences of any fixed length can be stored by a sufficient
number N of neurons; the associated context dimensionality of N , however,
makes this approach computationally quite costly. The SOMSD method rep-
resents temporal context by the winner index in the previous time step, i.e.
in addition to a weight wj ∈ Rn neuron nj uses a value cj ∈ Rl, l denoting
the dimensionality of the Euclidean lattice [2]. Distance d is computed by
dSOMSD((s1, . . . , st), nj) = η1‖st −wj‖2 + η2‖CSOMSD(s1, . . . , st−1)− cj‖2 where
CSOMSD(s) equals the index of neuron nj with smallest dSOMSD(s, nj). Due to the
compressed context information, this approach is very efficient by exploiting the
neighborhood structure of the neurons with its topological ordering property.
Since for sequential data, like for words over an alphabet {a1, . . . , aM}, the
neighborhood size is an exponential function of the word length, an Euclidean
target grid with inherent power law neighborhood growth is not suited for
topology preserving representation. We therefore extend this approach to ar-
bitrary triangular grid structures. Using a grid with > 6 neighbors per neuron,
the graph becomes part of the 2-dimensional hyperbolic plane, where exponen-
tial neighborhood growth is possible. Hence, adequate data representation can
be expected, as demonstrated in [5] for a non-recursive text processing SOM.

3 SOM for sequences (SOM-S)
Standard SOMs operate on a rectangular neuron grid embedded in a real-vector
space. More flexibility for the topological setup can be obtained by describing
the grid in terms of a graph: neural connections are realized by assigning
each neuron a set of direct neighbors. We have implemented a grid generator
with circular triangle meshing around a center neuron and given neighborhood
degree n. Figure 1 shows a small map with 7 neighbors for the inner neurons.
For ≥ 7 neighbors, an exponential neighborhood increase can be observed and
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Figure 1: Hyperbolic self organizing map with context.

a faultless embedding into the Euclidean plane is not possible, but still local
projections in terms of a fish eye magnification focus can be obtained.

The recursive nature of the shown map is explained exemplarily for neuron
T in Fig. 1. T is equipped with a weight w ∈ Rn and a context c given by
a location within a triangle of neurons N1, N2, N3, corner expressed affinities
by means of adjustable linear combination parameters ß12 and ß13. Distance
d of a sequence from T is recursively computed by dSOM-S((s1, . . . , st),T) =
η‖st − w‖2 + (1 − η)g(CSOM-S(s1, . . . , st−1), c). CSOM-S(s) is the index of the
neuron nj in the grid with smallest dSOM-S(s, nj). g denotes the grid distance of
the winner from the triangular position cj = (N1,N2,N3, ß12, ß13) given by the
shortest possible path in the mesh structure. Thereby, grid distances between
neighboring neurons possess unit length, and within the triangle N1,N2,N3 the
metric structure is approximated by the Euclidean distance. The range of g is
implicitly normalized by dividing by the maximum grid distance.

Training is carried out by presenting a pattern s = (s1, . . . , st), the deter-
mination of the winner k, and the update of weight and context in Hebbian
style applied to all neurons in the breadth first search graph around the win-
ning neuron, according to their grid distances. Hence, weight wj is updated
for sequence entry si by ∆wj = γhjk(si −wj). The learning rate γ is typically
exponentially decreased from 0.1 to 0.005 during training ; hjk describes the
influence of the winner k to the current neuron j as a decreasing function of
the grid distance. Context update is analogous: the current context, expressed
in terms of neuron triangle corners and coordinates, is moved by a γ-fraction
of the shortest path’s distance along such path towards the previous winner
location, adapting ß12/13, and exchanging N1/2/3 if necessary. In case of planar
circular grids with two possible ways of equal length the midway is taken. This
explains why the update path for the current context towards D2 is the dotted
line via D1 in Fig. 1. Grid distances and edges are initially stored in a matrix,
thus providing fast shortest path calculations. The parameter η controls the
balance between pattern and context influence; since at the beginning nothing
is known about the temporal structure, this parameter starts at 1, resulting in
the standard non-contextual SOM. It is decreased during training to an appli-
cation dependent value that mediates between the externally presented pattern
and the internally gained model about historic contexts.

4 Experiments
Mackey-Glass Series: The first learning task is the dynamics of the
real-valued chaotic Mackey-Glass time series dx

dτ = bx(τ) + ax(τ−d)
1+x(τ−d)10 using
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Figure 2: Temporal quantization errors of different model setups for the
Mackey-Glass series. The inset in the upper right shows the results from [10].

a = 0.2, b = −0.1, d = 17. The same setup is given in [10] and allows a com-
parison of results.1 Three types of maps with 100 neurons have been trained:
a 6-neighbor map without context constituting circular standard SOM, a map
with 6 neighbors and context consideration (SOM-S), and a 7-neighbor map
with context utilization providing hyperbolic grid (H-SOM-S). Each run has
been computed multiple with 1.5 ∗ 105 presentations starting at random posi-
tions within the Mackey-Glass series and step size ∆t = 3; the neuron weights
have been initialized white within [0.6, 1.4]. η has been decreased from 1 to
0.97. Figure 2 shows the quantization error for the above setups expressed by
the average standard deviation of the given sequence and the mean unit recep-
tive field for 29 time steps into the past. Similar to Voegtlin’s results shown in
the inset, we observe large cyclic oscillations driven by the periodicity of the
training series for standard SOM. SOM-S without and with hyperbolic grid
(H-SOM-S) yield better and less oscillating results. These are comparable or
even better than the results of RecSOM while requiring less computing power.

Binary Automata: The second experiment is also inspired by Voegtlin to
learn a 0/1-sequence generated by a binary automaton with P (0|1) = 0.4 and
P (1|0) = 0.3. The specialization of a neuron is given as the longest sequence
that leads to unambiguous winner selection. Fig. 3 shows the specialization of
a trained H-SOM-S and its good correspondence to the 100 most characteristic
sequences of the probabilistic automaton. Training has been performed with
3 ∗ 106 presentations, increasing the context influence η exponentially from 0%
to 6%. Putting more emphasis on the context results in a smaller number of
active neurons with longer specialization strings that cover small parts of the
input space only. In addition to the examination of neuron specialization, the
whole map representation can be characterized by comparing the input sym-
bol transition statistics with the learned context-neuron relations. While the

1We would like to thank T.Voegtlin for providing data for comparison.
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Figure 3: Receptive fields of a H-SOM-S compared to the most probable sub-
sequences of the binary automaton. Left hand branches denote 0, right is 1.

current symbol is coded by the winning neuron weight, the previous symbol is
represented by the linear combination of the winner’s context triangle neurons’
weights. The obtained pairs are clearly expressed in the trained map and only
few neurons contain values in an indeterminate interval [13 , 2

3 ]. Results for the
reconstruction of three automata can be found in table 1. The left column
indicates the number of expressed neurons and the total number of neurons in
the map. Note that the automata can be well re-obtained from the maps.

Reber Grammar: In a third experiment we have used more structured sym-
bolic sequences as generated by the Reber grammar depicted in Fig. 4. The
7 symbols have been encoded in a 6-dimensional Euclidean space. For train-
ing and testing we used concatenations of randomly generated words until
sequences of 3 ∗ 106 and 106 input vectors, respectively, were available. The
map contains 617 neurons on an hyperbolic grid. A number of 338 neurons de-
veloped a specialization for Reber strings with an average length of 7.23 char-
acters. Specializations separate into strict sectors on the circular grid, ordered
in a topological way by the last character. In agreement with the grammar, the
letter T takes the largest sector on the map. This ordering preference could not
be found with Euclidean grids, for which polymorphic patches emerged. Simi-
lar to the binary automata learning tasks, we analyzed the map representation
by the data reconstruction, backtracking all possible context sequences of each
neuron up to length 3. Only 118 of all 343 possible trigrams are realized. In
a ranked table the most likely strings cover all 33 Reber trigrams, and there
is a leap in the probability plot from entry number 33 (TSS, valid) to 34 (XSX,
invalid) emphasizing the learned Reber characteristic. The correlation of Reber
trigram probabilities and the relative frequencies found in the map is 0.75.

Type P (0) P (1) P (0|0) P (1|0) P (0|1) P (1|1)

Automaton 1 4/7 ≈ 0.571 3/7 ≈ 0.429 0.7 0.3 0.4 0.6
Map (98/100) 0.571 0.429 0.732 0.268 0.366 0.634

Automaton 2 2/7 ≈ 0.286 5/7 ≈ 0.714 0.8 0.2 0.08 0.92
Map (138/141) 0.297 0.703 0.75 0.25 0.12 0.88

Automaton 3 0.5 0.5 0.5 0.5 0.5 0.5
Map (138/141) 0.507 0.493 0.508 0.492 0.529 0.471

Table 1: Results for binary automata extraction.
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Figure 4: State graph of the Reber grammar.

5 Conclusion
We have presented a self organizing map with neural back-reference to its re-
cently active sites and flexible topological structure of the neuron grid. This
context model can be interpreted as the development of long range synaptic con-
nections, leading to more specialized map regions. By analyzing the trained net,
regularities within the input sequences could be reconstructed from the learned
neuron-context relations, as shown in different experiments. Our model can be
generalized to more sophisticated grid structures than the presented circular
triangular graphs with a fixed number of neighbors for the inner neurons: only
the context must be expressible in terms of affiliation to k (here 3) context
neurons, and for adaptation, the processability of the shortest path within the
graph is required. Graph traversals around the winner neurons can be reduced
to local regions by defining a radius dependent threshold below which further
updates can be neglected. Thus, together with the recursive properties of the
training dynamic, 3-dimensional structures with exponential branching could
be realized as approximation to simplistic brain models.
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