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Abstract. We study the regime of anticipated synchronization in
unidirectionally coupled model neurons subject to a common external
aperiodic forcing that makes their behavior unpredictable. We show nu-
merically and by implementation in analog hardware electronic circuits
that, under appropriate coupling conditions, the pulses fired by the slave
neuron anticipate (i.e. predict) the pulses fired by the master neuron.
This anticipated synchronization occurs even when the common external
forcing is a white noise.

1 Introduction

Synchronization of nonlinear systems is a fascinating subject that has been
extensively studied on a large variety of physical and biological systems[1].
While synchronization of oscillators goes back to the work by Huygens, the
last decade has witnessed an increased interest in the topic of synchronization
of chaotic systems [2].

Recently, Voss [3] has discovered a new scheme of synchronization, called
“anticipated synchronization”. Voss has shown that by using appropriate delay
lines it is possible to synchronize two unidirectionally coupled systems in such
a way that the slave system, y(t), predicts the behavior of the master system,
x(t). One of the coupling scheme was considered:

x(t) = £(x(1) "
F() = fv(0) + Kix(t) - y(t - 7))

f(x) is a function which defines the autonomous dynamical system under con-
sideration, K is the coupling strength and 7 is a delay time. It is easy to see
that the manifold y(¢) = x(¢ + 7) is a solution of the equations, what becomes
more remarkable when the dynamics of the master system x is “intrinsically
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Figure 1: Schematic diagram of two model neurons coupled in a unidirectional
configuration, subjected to the same external forcing and with a feedback loop
(with a delay time 7) in the slave neuron.

unpredictable”, as it is the case of a chaotic system. We study numerically
and experimentally the regime of anticipated synchronization in excitable non-
autonomous systems. In our case the intrinsic unpredictability of the behavior
of the dynamical system x does not arise from a chaotic dynamics, but from
the existence of an external random forcing. We consider the coupled systems

x(t) f(x(t)) + I(t) @)
y(t) £y () + I(t) + K[x(t) —y(t —7)],

where I(t) represents a common aperiodic external forcing. Notice that y(¢) =
x(t + 7) is no longer an exact solution of the equations. We show that under
appropriate coupling conditions there can be a very good correlation between
y(t) and x(¢+7) which, in practice, allows the prediction of the future behavior
of x(t) with a high degree of accuracy.

Specifically, we have considered models of sensory neurons. Sensory neu-
rons transform external stimuli signals as pressure, temperature, electric pulses,
etc., into trains of action potentials, usually referred to as ’spikes’ or ’firings’.
Their behavior is typical of excitable systems: if the forcing is above a certain
threshold, the neuron fires a pulse, and after the firing, the recovery process
produces an absolute refractory time during which a second firing cannot occur.
In general, sensory neurons work in a noisy environment. As a consequence,
the time intervals between spikes contain a significant random component, and
random spikes often occur even in the absence of stimuli. The topics of syn-
chronous oscillations and noise have received much attention (see, e.g., [4]),
since it has been suggested that synchronous firing activity of sensory neurons
might be a part of higher brain functions and a method for integrating dis-
tributed information into a global picture [5]. Here we find that the interplay
of coupling, delayed feedback, and common noise can lead to anticipated syn-
chronization. We illustrate this effect in the well known FitzHugh-Nagumo and
Hodgkin-Huxley neuron models. By coupling two of such systems in an uni-
directional configuration as represented in the system (2), we find that when
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both subsystems are subjected to the same external random forcing, the slave
fires the same train of spikes as the master, but at a certain amount of time
earlier.

1.0

0.6

x [a.u]

0.2

Xs

Ky

-02

500 1500 1550 1650
time [a.u] time [a.u]

-0.5

0.01

£(t)

-0.01

1.9515 1.9520 1.9525 1.9530 1000 3000 5000 1650 1750
t [a.u.] time [ms] time [ms]

Figure 2: Left part of the panel shows the pulse obtained from a numerical
integration of the FitzHugh-Nagumo set of Eqs.(3-4). The parameters are:
a=0.139, b = 2.54, ¢ = 0.008, K = 0.15. The external forcing I(t) (displayed
in figure (b)) is a random amplitude noise of characteristic time 7' = 2, mean
value Iy = 0.03 and amplitude D = 0.01. Notice (figure (a)) that the pulse of
the slave system y;(¢) (dashed line) anticipates the pulse of the master system
z1(t) (solid line) by a time approximately equal to the time delay 7 = 4.
The right part of the panel shows trains of spikes obtained from numerical
simulations of models of unidirectionally coupled neurons subjected to the same
Gaussian white noise with mean Iy and correlations ([I(t) — Ih]|[I(t') — Lh]) =
2D4(t — t'):(a) and (b) show time serie and one firing out of the time serie
of FitzHugh-Nagumo neurons, Eqs. (3-4). The parameters are a = 0.139,
b =254, € = 0.008, [, = 0.03, K = 0.03, 7 = 10, D = 2.45 x 1075, (c)
and (d) show time serie and one firing out of the time serie of Hodgkin-Huxley
neurons, Eqgs. (5) with K = 0.03 ms™!, 7=50 ms, and D=0.5 mV?/ms; all
other parameters as in [6] (I’ = 6 C, V; = —75 mA in the notation of that
paper).

2 Numerical results

First we show results based on the two-dimensional FitzHugh-Nagumo model
with variables x = (1, z2). The fast variable, z;, is associated with the acti-
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vator, and the slow recovery variable, x5, is associated with the inhibitor. The
equations for the master x = (x1,x2) and the slave y = (y1,y2) systems, under
unidirectional coupling are, respectively (see the schematic diagram shown in
Fig. 1):

r = —-I1 (561 — a)(ml — 1) — T2 + I(t)
iIfQ = 6(:171 — biEQ) (3)
and
Yy = -y —a)(y1 —1) —y2 + I(t)+
+K[z1(t) — y1(t — 7)] (4)
Y2 = €(y1 —by2)

where a, b, and € are constants, K is the coupling strength, 7 is a delay time
(associated to an inhibitory feedback loop in the slave neuron) and I(t) is an
one-dimensional external forcing added to the fast variables of two systems x
and y. Note that only the fast variables of the two systems are coupled. If the
external forcing is constant and above threshold, for appropriate values of K
and 7 the master system fires pulses periodically and the coupling induces a
constant time shift 7 between master and slave spikes. We did not consider a
constant value of I(¢) but on the contrary we have considered different types of
random external forcing. The first one corresponds to a random process whose
amplitude switches after each time period T to a new random value chosen
uniformly in [Ip — D,Iy + D], where D is the noise intensity. We chose I
very close to (but below) the firing threshold of the excitable system. It would
appear at first thought that with this type of external forcing the behavior of the
master system can be easily predictable. However, there are two main factors
that make the system response unpredictable: if the effect of the perturbation
is not strong enough the system does not fire a pulse; besides, the system has
a refractory time during which, another firing is not possible. Figure 2(left
(a-b)) shows that anticipation occurs. After an initial transient time the two
systems synchronize such that the slave system anticipates the firings of the
master system by a time interval 7.

The same qualitative results are found with other types of external forcing
such as colored or even white noise. Figures 2(right (a-b)) display the spikes
of the master and slave systems when I(t) is Gaussian white noise. Sometimes
the slave system makes an error in anticipating the master firings i.e. it might
fire an “extra” pulse, which has no corresponding pulse in the train of pulses
fired by the master. Notice that in Fig. 2(right (a)) an error at about t = 1900
occurs. Not surprisingly, we find that the longer the anticipation time 7, the
larger the number of errors. However, for a given anticipation time, the number
of errors can be reduced considerably if a “cascade” of an adequate number
of slave neurons is considered. Next we show simulations based on a more
realistic model, namely the model of electro-receptors proposed by Braun et.
al [6]. This model is a modification of the Hodgkin-Huxley neuron model:
CyE = —iNg — iKx — isq — isr — i1, Where z is the potential voltage across the
membrane and Cs is the capacitance; ¢y, and ix are the fast sodium and
potassium currents, 54 and i, are additional slow currents, i; is a passive leak
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Figure 3: Experimental train of spikes that shows anticipation in the spikes
fired by the slave neuron. The anticipation time is approximately 14 ms.

current. For details and functional dependence of the currents on the voltage
z and other factors (as temperature) see [6].

We extend the model to account for two unidirectionally coupled neurons,
with a delayed feedback loop in the slave neuron, and subject to a common
external forcing I(t), in the same way as in the FitzHugh-Nagumo model, e.g.,
the equations for the master, z, and for the slave, y, neurons are:

Ovis = iy, —ife — %y — it —if + (1)
Omy = —in, =ik —igq— 15 — i +1(1) (5)

+ Klz(t) —y(t —7)]

Figures 2(c-d) display the results when the common external forcing I(t) is a
Gaussian white noise. We chose parameters such that in the absence of forcing
there are no spikes (subthreshold, noise-activated firing regime). The behavior
observed is qualitatively the same as in the FitzHugh-Nagumo model (the slave
neuron anticipates the fires of the master neuron), which indicates that the an-
ticipation phenomenon is general and model independent. Remarkably, in this
model the anticipation time can be larger than the pulse duration. To assess the
robustness of the anticipated synchronization observed in the numerical simu-
lations, we have implemented the FitzZHugh-Nagumo model in analog hardware
and constructed two coupled electronic neurons. The detailed description of the
electronic implementation can be found in [7]. Similar electronic neurons have
been implemented in [8], where it was shown that their behavior is very similar
to that of biological neurons: when interfaced to biological neurons, hybrid
circuits, with the electronic neurons taking the place of missing or damaged
biological neurons, could function normally. Our electronic coupled neurons
behave very similar as in the numerical simulations. For an appropriate value
of the coupling, we observe that, after a transient, the master and slave elec-
tronic neurons synchronize in such a way that the slave neuron anticipates the
fires of the master neuron by a time interval approximately equal to the de-
lay time 7 of the feedback mechanism. Figure 3 shows a typical spike train.
Without coupling and feedback the neurons fire pulses which are, in general,
desynchronized (due to the small mismatch between the circuits).
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3 Conclusions

To summarize, we have studied the regime of anticipated synchronization in
coupled systems exhibiting neuronal-type excitable behavior, when they are
driven by common external aperiodic forcing. We have shown that under ap-
propriate conditions, the slave system can anticipate the random spikes of the
master system. This is despite of the fact that the anticipated synchroniza-
tion manifold is not a solution of the equations. We have simulated numeri-
cally the coupled neurons with the FitzHugh-Nagumo and a modified Hodgkin-
Huxley models and we have considered different types of random forcing. The
FitzHugh-Nagumo model was also implemented in analog hardware, showing
that the anticipation phenomenon is very general and robust. Our results show
that in coupled model neurons with coexistance of noise and delayed feedbacks,
a new interesting and unexpected phenomena might appear. We hope that our
findings will stimulate to search for anticipated synchronization in biological
systems and to invastigate the associated effects which such synchronization
might produce.
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