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Abstract 
 

This paper describes the use of Universal Learning Networks (ULNs) in the speed 
control of a separately excited DC motor drives fed from Photovoltaic (PV) 
generators through intermediate power converters. Two ULNs-based identification 
and control are used. Their free parameters are updated online concurrently by the 
forward propagation algorithm. The identifier network is used to capture and 
emulate the nonlinear mappings between the inputs and outputs of the motor 
system. The controller network is used to control the converter duty ratio so that the 
motor speed can follow an arbitrarily reference signal. Moreover the overall system 
can operate at the Maximum Power Point (MPP) of the PV source. The simulation 
results showed a good performance for the controller and the identifier during the 
training mode and the continuous running mode as well. 

 

 
1. Introduction 
 

Universal Learning Networks (ULNs) have been proposed to provide a universal framework for the 
class of NNs and to unify their learning algorithms [1]. ULNs can be also used to study the stability 
of any dynamical system by calculating the first and higher order derivatives and checking if they 
converge to zero or not. Therefore, this research is considered as an essential study that precedes the 
higher order derivatives-based stability analysis, which is not addressed in this paper. 
For several adaptive control schemes proposed in the literature, the state estimation and parameter 
identification are based on linear models. But neglecting the nonlinearities of the motor system 
make it unrealistic and put its stability in risk. To overcome this problem, Weerasooriya and 
Sharkawi [2-3], have proposed the use of artificial Neural Networks (NNs) for system identification 
of the nonlinear motor dynamics, followed by the trajectory control of a DC motor using the direct 
model reference adaptive control. In their work, the training of the neural network is achieved using 
the offline static backpropagation algorithm. Rubaai and Kotaru [4], have also proposed a similar 
use of NNs as in [2-3]. In their work, the motor/load dynamics are modeled online and controlled 
using the dynamic backpropagation algorithm with adaptive learning rate. In [2-3] and [4], the DC 
motor is supplied directly from a conventional DC supply. 
In this paper, two ULNs are used and trained online for identification and control of a photovoltaic 
(PV) supplied, separately excited DC motor loaded with a centrifugal pump via a DC-DC buck-
boost converter. Two modes of operation are obtained: the training mode, in which the forward 
propagation algorithm updates the free parameters of both networks concurrently every window-size 
instants until their training errors reach almost a minimum value. The continuous running mode, in 
which both networks use the weight matrices obtained at the end of the training mode. This paper is 
organized as follows: In the next section, the dynamics of the DC motor system are described. The 
online identification and control algorithm is given in section3. After that in section 4, the 
simulation results for the online training algorithms of both networks are discussed. Finally, the 
major conclusion of this paper and some thoughts of the future research are summarized in section 5. 

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 173-178



2 System Dynamics 
 

The DC motor system mainly consists of PV generator, DC-DC converter and DC motor coupled to 
a centrifugal pump as shown in Fig. 1. This system is not experimentally installed yet. Therefore, to 
generate input/output training data, a mathematical model is needed. In the following subsections, a 
mathematical model for each device is developed and combined together to form the complete 
model, which used in the simulation studies. 
 
 
 
 
 
 
 
 
2.1 PV Generator Model 
 

The PV generator consists of solar cells connected in series and parallel fashion to provide the 
desired voltage and current required by the DC motor system. This PV generator exhibits a 
nonlinear voltage-current characteristic that depends on the insolation (solar radiation), as (1). 
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where Vg is the PV generator voltage; Ig is the PV generator current; Λg=Λ/Ns is the PV generator 
constant; Λ=q/(ε×Z×U), is the solar cell constant; q=1.602×10-19C. is the electric charge; 
Z=1.38×10-23 J/K is Boltzman constant; U= 298.15 °C is the absolute temperature; ε =1.0 is the 
completion factor; Ns=360 is the series-connected solar cells; Np=3 is the parallel paths; Rsg= 
Rs×(Ns/Np) is the PV generator series resistance; Rs= 0.0152 Ω is the series resistance per cell; 
Iphg=Iph×Np is the insolation-dependent photo current of the PV generator; Iph=4.8 A is the photo 
current per cell; Iog=Io×Np is the PV generator reverse saturation current; Io=3.0797×10-10 A is the 
reverse saturation current per cell; G is the solar insolation in per unit, and 1.0 per unit of G = 1000 W/m2. 
The PV generator Voltage-Current and Voltage-Power characteristics at five different values of G 
are shown in Fig. 2. From which, at any particular value of G, there is only one point at which the 
PV generator power is maximum. This point is called the Maximum Power Point (MPP). To locate 
its position, the corresponding voltage (Vmg) and current (Img) must be determined first 
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Fig. 2. PV generator characteristics at five different values of G. 

 
 

2.2 DC Motor Model 
 

The dynamics of the separately excited DC motor and its load are represented by the following set 
of differential equations with constant coefficients: 
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Fig. 1. The proposed DC motor system 
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where the name-plate parameters are: Voltage Va=120 volt; Current Ia = 9.2 A.; Speed ω = 1500 
rpm; Inertia Ja = 0.02365 Kg.m2; Resistance Ra =1.5 Ω; Inductance La=0.2 H; Torque & back emf 
constant K = 0.67609 Nm.A-1; Motor friction A1 = 0.2 Nm; Load friction A2 = 0.3 Nm; damping B = 
0.002387 Nm.s.rad-1; Load torque constant ξ = 0.00059 Nm.s.rad-1. 
Using a sampling time interval ∆T of 0.001s, and a first-order finite-difference approximation for 
the motor speed and current, the finite difference equation that governs the discrete-time dynamics 
of the DC motor is given by (5). 
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where α, β, γ, θ, σ and ψ are constants depending on ∆T as well as the motor/load parameters. 
 
2.3 DC-DC Converter Model 
 

The most important parameter of the converter is its chopping ratio Y(k) that depends on the duty 
ratio D(k) through a nonlinear relation given by (6). 
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This converter is inserted between the PV generator and the DC motor to match the PV generator 
output characteristics to the DC motor input characteristics. Assuming the converter is ideal, then its 
input and output powers are equal resulting in the following relation: 
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3. Online Identification and Control Algorithms 
 
The block diagram explaining the online identification and control of the DC motor system is shown 
in Fig. 3. Both the controller and the identifier are feed forward NNs with architecture 5-8-1 and 5-
12-1, respectively. Each neuron in the hidden and output layers uses a sigmoidal activation function. 
The inputs to the controller network are: the MPP voltage Vmg(k), the reference speed ωref(k), the 
previous values of the identified speed ω̂ (k-1), ω̂ (k-2) and the previous value of the controller 
output D(k-1). Whereas the only output is the converter duty ratio D(k). Also the inputs to the 
identifier network are: the previous values of the motor speed ω(k-1) and ω(k-2), D(k), D(k-1) and 
Vmg(k). Whereas the only output is the identified motor speed ω̂ (k). 
To obtain efficient performance for the identifier and the controller networks, their error functions 
EI(k) and EC(k) are calculated considering not only the current difference between the desired and 
actual outputs but also considering the past differences given by (8) and (9), respectively. 
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where TI and TC are the set of updating window-size instants of the identifier and the controller 
parameters, respectively. 
Both the identifier and controller free parameters (λI) and (λC) are updated every window size based 
on the gradient method given by (10) and (11), respectively. 
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where ηI & µI and ηC & µC are the learning rate and the momentum coefficient of the identifier and 
the controller networks, respectively.                      and                         are the  ordered derivatives of 
the identifier and controller errors w.r.t. their free parameters. 
The training algorithm of the controller network is based on the information transferred from the 
identifier network. Initially, this information may be incorrect. So that it is necessary to speed up the 
training ability of the identifier w.r.t the controller. This can be achieved by setting ηI > ηC and this 
guarantees correct information flow from the identifier network to the controller network. 
The value of the learning rate and the length of the window size instants are the most important 
parameters that play vital role in the training of both networks. Their values should be adjusted 
carefully to achieve an efficient training algorithm. Actually when dealing with dynamical systems, 
η must be as small as possible. Decreasing the window size instants has the same effect as decreasing 
η. Based on trial-and-error, it is found that ηI =10-6, µI =0.2, TI =5 instants (current instant plus 4 
previous instants), ηC =10-9, µC =0.08 and TC = 10 instants, (current instant plus 9 previous instants). 
The ordered derivative                 is given by (12) in which, both the direct and indirect relation 
between EI and λI are considered. The direct relation is calculated by ∂EI(k)/∂λI. In this application, 
the direct relation always equals zero. But the indirect relation is calculated by considering ω̂ (k), 
which is the identifier output that directly influence EI(k), as intermediate variables. 
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Let us introduce the notation P(j, t, λI) to represent the ordered derivative                   , where hj is 
the output of node j. The calculation of P(j, t, λI) also requires the help of some intermediate 
variables. This leads to the forward propagation algorithm give by (13). Where JF(j) is the set of 
suffixes of the nodes connected to node j, J is the set of suffixes of the total nodes, τij is the time 
delay of the branch from node i to node j, and hi is the output of the node i. 
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If the branch connecting nodes i and j has no time delay, then τij is set to zero. The order derivative 
                      can be calculated using both (12) and (13) iteratively. 
By the same way, the controller ordered derivative                          can be calculated by using (14) 
and (15) iteratively. 
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Fig. 3. Online identification and control scheme of the DC motor system. 
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Interested readers can get more details about the forward propagation algorithms for dynamical and 
static networks in [5]. 
Although the calculation of                  and                  are systematic and simple, the ordered 
derivatives of all nodes during window-size instants must be calculated first. This resulting in a little 
bit longer training time of both networks. 
The controller performance is investigated for different shapes of the reference signal and showed a 
good tracking capability. For brevity, the only results addressed here are those related to the 
reference speed given by (16). The value of G(k) is also assumed to be given by (17). 
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G(k) = 0.2 + 0.8 sin(πk∆T)     (17) 
 
 

4. Simulation Results 
 

Both the identifier and the controller networks are trained online concurrently by the forward 
propagation algorithm. The learning curves of the both networks are given in Fig. 4. 
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(a) For the controller network                     (b) For the identifier network 

Fig. 4. Training error vs number of epochs 
 

From these figures, the controller error reached a value of 0.56 after 5×105 training epochs. After 
this point, no improvement in the controller performance is achieved. Therefore, the free parameters 
of the controller and the identifier are saved, and the training algorithm is terminated. But the 
controller is designed to operate continuously during the daytime. For that reason the saved free 
parameters can be used as initial values for the re-operation. As a conclusion, there are two modes 
of operation: The training mode, in which the weights and biases of both networks are initialized 
randomly and updated every window size instant based on the forward propagation algorithm until 
no improvement in the controller performance is achieved. The training algorithm during this mode 
is given in Table 1. The continuous running mode, in which the operation of both networks is based 
on the pre-saved weights and biases that are not updated during this mode of operation. 
 

Table 1. Training algorithm for the identifier and the controller networks during the training mode. 
Step 1: The free parameters of both networks are randomly initialized with small values. 
Step 2: The controller output D(k) is calculated. 
Step 3: The actual motor speed is calculated based on (5). 
Step 4: The Identifier output ω̂ (k) is calculated. 
Step 5: Calculate the error functions Ei(k) and Ec(k) based on (8) and (9). 
Step 6: The ordered derivatives                      and                       are calculated based on (12) ~ (15). 
Step 7: Update the identifier and the controller free parameters based on (10) and (11). 
Step 8: Repeat from step 2 to step 7 until the controller training error reaches a minimum value. 
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The motor dynamics are represented over 1000 sampling instants. During the continuous running 
mode, the motor actual and identified speeds are compared to the reference speed as shown in Fig.5. 
Where Fig. 5-a shows the starting characteristics of the DC motor throughout the first 1000 
sampling time. And Fig. 5-b shows the steady-state operation of the DC motor throughout the next 
1000 sampling instants. Similar curves to those displayed in Fig. 5-b are obtained at the end of the 
training mode. From these figures, both ω and ω̂  are very close to each other and also close to the 
reference speed indicating a good performance for the controller and the identifier networks as well. 
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 (a) Starting operation                          (b) Steady state operation 

Fig. 5. Tracking performance during the continuous running mode 
 
 

5. Conclusion 
 

In this paper, a separately excited DC motor loaded with a centrifugal pump and supplied from PV 
generator via DC-DC buck-boost converter is successfully controlled using neural networks. Two 
neural networks are used for identification and control of the DC motor system. These networks are 
trained online using the forward propagation algorithm for calculating the ordered derivatives of the 
universal learning networks. The simulation results indicated a good performance for the controller 
and the identifier networks. The overall system stability was not discussed in this paper even it is a 
unique point. But it will be discussed later using the higher ordered derivatives of the ULNs. Also 
the control algorithm of the DC motor system will be verified experimentally. Therefore the system 
identification will be based on real data, and the mathematical model used in this paper will not be 
used any more. 
 
 

References 
[1] K. Hirasawa, X. Wang, J. Murata, J. Hu, and C. Jin: Universal learning network and its 

application to chaos control. Neural Network, Vol. 13, pp. 239-253, 2000. 
[2] S. Weerasooriya and M. A. El-Sharkawi: Identification and control of a DC motor using back 

propagation neural networks. IEEE Trans. Energy Conversion, Vol. 6, pp. 663-669, 1991. 
[3] S. Weerasooriya and M. A. El-Sharkawi: Laboratory implementation of a neural network 

trajectory controller for a DC motor. IEEE Trans. Energy Conv., Vol. 8, pp. 107-113, 1993. 
[4] A. Rubaai and R. Kotaru: Online identification and control of a DC motor using learning 

adaptation of neural networks. IEEE Trans. Industry Application, Vol. 36, pp. 935-942, 2000. 
[5] K.Hirasawa, J.Hu, M.Ohbayashi, and J.Murata: Computing higher order derivatives in universal 

learning networks. Journal of Advanced Computational Intelligence, Vol. 2, pp. 47-53, 1998. 
 

ω 

ωref 

ω̂  
ω 

ωref 

ω̂  

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 173-178




