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Abstract. With the aim of acquiring a more precise probabilistic model
for the future graph structure of such a real-world growing network as the
Web, we propose a new network growth model and its learning algorithm.
Unlike the conventional models, we have incorporated directional attach-
ment and community structure for this purpose. We formally show that
the proposed model also exhibits a degree distribution with a power-law
tail. Using the real data of Web pages on the topic “mp3”, we experi-
mentally show that the proposed method can more precisely predict the
probability of a new link creation in the future.

1 Introduction
The World-Wide Web provides a vast repository of information and continues
to grow as an important new medium of communication. From the scientific
and technological points of view, investigating the Web is becoming an impor-
tant and challenging research issue [8, 1]. Also, applying the theory of adaptive
computation such as neural computation is expected to be effective for mining
and modeling this rich collection of data [9]. In this paper, we address the
problem of learning Web dynamics.

The pages and hyperlinks of the Web can be viewed as nodes (vertices) and
links (edges) of a network (directed graph). This network (graph) structure is
useful, for example, in improving Web search engines [7] and understanding the
ecology of the Web. Since the Web is constantly growing through the addition
of new pages and hyperlinks created by users with their particular interests,
modeling the growth process of this network is an important task [8, 1].

A fundamental characteristic of any network is the degree distribution F (d),
which represents the fraction of the number of nodes that have d links in the
network. Empirical results show that for many large-scale real-world networks
including the Web, the degree distributions do not follow Poisson distribu-
tions, which the classical random graph theory of Erdös and Rényi expects,
but possess power-law tails [2, 1]. Thus, the growing network model for the
Web must at least satisfy the following conditions: Its growth process must
not be completely random but obey certain self-organization principles. After
it has sufficiently grown, the degree distribution of the resulting network must
have a power-law tail.

Barabási and Albert [2] discovered a growing network model satisfying these
conditions. The principal ingredient of their model is a mechanism called
preferential attachment (“rich get richer” mechanism). Some variants of the
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Barabási-Albert (BA) model have been presented [1]. In particular, by in-
troducing mixtures of preferential and uniform attachment, Pennock et al. [10]
more accurately accounted for the degree distributions in the Web than the BA
model. Since a system with power-law is known to have a scale-free nature,
these growing network models are generally referred to as scale-free models.

Another characteristic of the Web is the existence of community structure,
and the Web grows as various clusters are formed [8, 5]. Here, a community
is defined as a collection of nodes in which each member node has more links
to nodes within the community than to nodes outside the community [8, 5].
However, the existing scale-free models do not take into account community
structure. On the other hand, there have been several investigations using
graph-theoretic methods [5] and latent variable models such as PHITS [3] to
identify community structure. However, these investigations dealt with only
static networks, where the number of nodes and links were not allowed to
increase. In our previous work [6], we proposed a growing network model
that incorporates community structure into an existing scale-free model. Also,
using synthetic data, we experimentally demonstrated that predictive ability
can definitely be improved by incorporating community structure. However,
verifying the model with real Web data remained an important task.

When a new link is created, the following four cases can happen. It is
attached from a (new / old) node to a (new / old) node. Each growing network
has its own bias for these four cases. The mechanism that appropriately biases
these four cases in a new link creation is referred to as directional attachment.
To precisely model given growing networks, it is necessary to incorporate the
directional attachment proper to them. However, the existing scale-free models
do not take into account directional attachment.

To more precisely model such a real-world growing network as the Web,
we propose a new network growth model and its learning algorithm. Unlike
the conventional models, we incorporate directional attachment and community
structure. We show that the proposed model also exhibits a degree distribution
with a power-law tail. Using real Web data, we experimentally show that both
directional attachment and community structure are effective for modeling such
a growing network as the Web.

2 Proposed Model
Let us describe our proposed model. We assume that nodes and links do not
disappear in the growth processes.

2.1 Preliminaries
At an arbitrary time t ≥ 0, a growing network is represented by an adjacency
matrix At whose (i, j)-element At(i, j) is the number of links from node i to
node j. Let Nt denote the set of nodes in the growing network at time t. For
any t ≥ 1, we define the matrix ∆At of the link increments at time t as follows:
If i, j ∈ Nt−1 then the (i, j)-element ∆At(i, j) of ∆At is At(i, j) − At−1(i, j),
otherwise it is At(i, j).

In accordance with the exsiting scale-free models, we suppose that the
growth process of a network is described as a stochastic process P (∆At |At−1, θ),
(t ≥ 1), where θ denotes the set of model parameters. Also, the probability

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 15-20



P (∆At |At−1, θ) is assumed to be given by the multinomial distribution

P (∆At |At−1, θ) ∝
∏

ut,vt

P ([ut, vt] |At−1, θ)
∆At(ut,vt),

where P ([ut, vt] |At−1) indicates the probability that a new link at time t,
denoted by [ut, vt], from an originating node ut to a target node vt is added to
the network represented by At−1.

2.2 Directional attachment
We incorporate the directional attachment by introducing a set of control pa-
rameters, η = {η00, η01, η10, η11}, (0 ≤ ηερ ≤ 1,

∑
ε,ρ ηερ = 1), as shown in

Table 1. That is, we introduce the fully correlated model for directional at-
tachment. To clarify the effectiveness of incorporating directional attachment,
we also consider the independent model shown in Table 1 for comparison, where
α0 (β0) indicates the probability that a new node is chosen as the originating
(target) node. Note that the existing scale-free models can be regarded as
independent models for directional attachment.

Table 1: Directional attachment in the proposed model
Fully correlated model Independent model
old node new node old node new node

old node η00 η01 (1 − α0)(1 − β0) (1 − α0)β0

new node η10 η11 α0(1 − β0) α0β0

2.3 New link creation process
We assume that there exist K communities, and each node belongs to only one
community without changing the community during the studied period. Let
{z1, · · · , zK} be the set of community-labels. Suppose that mt new links are
added at each time t. Given the adjacency marix At−1 of the network at time
t − 1, a new link [ut, vt] at time t is generated as follows:

First, zk is chosen with probability ξk as the community to which the orig-
inating node ut of the new link belongs. Next, z� is chosen with probability
γk� as the community to which the target node vt belongs. Finally, link [ut, vt]
is created with probability P ([ut, vt] | [zk, z�], At−1, θ). Namely, the probability
P ([ut, vt] |At−1, θ) is defined by

P ([ut, vt] |At−1, θ) =
K∑

k,�=1

ξkγk�P ([ut, vt] | [zk, z�], At−1, θ).

After the communities [zk, z�] of ut and vt are given, whether ut and vt are
new or old is decided according to the directional attachment, ηk� = {ηk�

00,
ηk�
01, ηk�

10, ηk�
11}, as shown in Table 1. If both ut and vt are new nodes, a new

node of community zk and a new node of community z� are created with
probability 1. Namely, the probability P ([ut, vt] | [zk, z�], At−1, θ) is defined
by P ([ut, vt] | [zk, z�], At−1, θ) = ηk�

11. If ut is an old node and vt is a new
node, the probability of choosing ut is defined by a mixture of preferential and
uniform attachment within community zk, and a new node of community z� is
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created with probability 1. Namely, the probability P ([ut, vt] | [zk, z�], At−1, θ)
is defined by

P ([ut, vt] | [zk, z�], At−1, θ) = ηk�
01

{
αk Dk

t−1(ut)∑
i∈Nk

t−1
Dk

t−1(i)
+ (1 − αk)

1
Nk

t−1

}
,

where N k
t−1 denotes the set of nodes that belong to community zk in the growing

network at time t − 1, Nk
t−1 denotes the number of elements of N k

t−1, and
Dk

t−1(i) =
∑

j∈Nk
t−1

{At−1(i, j) + At−1(j, i)} for any i ∈ N k
t−1.

Similarly, the probability P ([ut, vt] | [zk, z�], At−1, θ) is also defined for the
case where ut is a new node and vt is an old node and the case where both
ut and vt are old nodes. Hence, a genetative model of growing networks
has been constructed. Here, the set θ of model parameters becomes θ =
{αk, β�, ηk�

ερ, ξk, γk� ; k, � = 1, · · · ,K, ε, ρ = 0, 1}, where 0 ≤ αk, β�, ηk�
ερ, ξk,

γk� ≤ 1, and
∑

ε,ρ ηk�
ερ =

∑
k ξk =

∑
� γk� = 1. We assume that mt is given.

2.4 Degree distribution
Let us investigate the degree distributions of the growing networks generated
by the proposed model. It is possible to give a formal proof of the following
proposition using the master equation approach with the continuous approxi-
mation [4], but we omit the proof due to the lack of space.
Proposition 1 Suppose that the values of all parameters of the proposed model
are not zero. We arbitrarily fix an initial network and consider the growing
network generated by the proposed model from the initial network. Let Ft(d) be
the degree distribution of the growing network at time t. Then, there exists a
positive constant ν such that Ft(d) ∝ d−ν as t → ∞, d → ∞.
Hence, the proposed model generically exhibits a degree distribution with a
power-law tail after it has sufficiently grown.

3 Learning Algorithm
Let {A0, A1, · · ·, AT } be the observed time-sequence of adjacency matrices of
a growing network. Our task is to estimate the set θ of model parameters from
these data.

We first perform clustering for the network of adjacency matrix AT (the last
observed network) to assign the community-label to each node of the network.
Several methods [5] can be used for this clustering. In our experiments, we
made the network undirected, added self-links to the network, and used the
K-means clustering algorithm based on the Kullback-Leibler divergence.

Next, we estimate θ. Let {([uλ
t , vλ

t ];mλ
t );λ = 1, · · · , rt} be the set of the

links added newly at time t, where ([uλ
t , vλ

t ];mλ
t ) means that link [uλ

t , vλ
t ] is

added mλ
t times, that is, ∆At(uλ

t , vλ
t ) = mλ

t . We can empirically estimate
the parameters {ξk}, {γk�} and {ηk�

ερ} from these data based on the clustering
result. Now it suffices to estimate the parameters ϕ = {α, β}, where α = {αk}
and β = {β�}. We perform the maximal likelihood estimation. In this case,
the log-likelihood function L(ϕ) is of the form

L(ϕ) =
T∑

t=1

log P (∆At |At−1, ϕ) =
T∑

t=1

rt∑
λ=1

mλ
t log P ([uλ

t , vλ
t ] |At−1, ϕ) + const.
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Optimal parameter values can be efficiently estimated by using an iterative
alogorithm based on the EM algorithm, but we omit the details due to the lack
of space.

4 Experimental Evaluation
For simplicity, we focus on the case of undirected graphs in our experiments.
Thus, we have αk = βk, ηk�

10 = ηk�
01, (k, � = 1, · · · ,K).

4.1 Performance measure
Let θ̂K denote the set of parameter values of the learned model with K commu-
nities. To evaluate the prediction performance of the learned model, we define
the dynamic probability matrix Γ̂K by Γ̂K(i, j) = P ([i, j] |AT , θ̂K), which rep-
resents the probability distribution for a new link creation given AT . Let Γ
denote the dynamic probability matrix of the actual process given AT . We
evaluate the prediction performance of the learned model by the Kullback-
Leibler divergence, I(Γ; Γ̂K) =

∑
i,j Γ(i, j) log(Γ(i, j)/Γ̂K(i, j)).

4.2 Evaluation for real Web data
We evaluate the proposed model using a growing network of Web pages con-
cerning a broad-topic.

4.2.1 Real Web data
Based on Kleinberg’s method [7], we construct the network Gt(σ) of the Web
pages concerning a topic σ at time t in the following way. At each time τ , we
first collect the 200 highest-ranked pages for the query σ by using a text-based
Web search engine. Next, we collect all of the pages linked from these pages,
and up to 50 the pages that link these pages. Let Sτ (σ) denote the set of Web
pages collected in this way. We define Gt(σ) by the network induced on the
Web pages in ∪t

τ=0Sτ (σ) at time t.
We consider the real-world growing network Gt(σ), (t ≥ 0). In the experi-

ment, “mp3” was used as topic σ, and the time-interval was one month. Also,
the observed time-sequence of the adjacency matrices were {A0, A1, A2}. We
used {A0, A1} as the training data, that is, T = 1.

4.2.2 Performance evaluation
For the data of this real-world growing network, we investigated the effective-
ness of incorporating directional attachment and community structure. Let
Model-0 be our independent model for directional attachment (see Table 1)
and Model-1 be the proposed model, that is, the fully correrated model for
directional attachment.

Figure 1 displays I(Γ; Γ̂K) with respect to K for Model-0 and Model-1.
Here, Γ was empirically calculated from A1 and A2. Figure 1 first shows that
Model-1 could much more accurately predict the actual dynamic probability
matirx than Model-0. This result implies that the prediction performance can
be improved by incorporating directional attachment. Figure 1 also shows that
although the prediction performance could be raised by increasing the number
K of latent variables, an optimal number (11 in this case) of latent variables
could exist. In particular, the proposed model incorporating community struc-
ture could more accurately predict the actual dynamic probability matrix than
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the model not incorporating it (K = 1). These results imply that the prediction
performance can be improved by incorporating community structure.
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Figure 1: Prediction performance of learned models.
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