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Abstract. In this paper we have studied adaptive equalization in the GSM
(Global System for Mobile communications) environment using radial basis
function (RBF) networks. Equalization is here considered as a classification
problem, where the idea is to map the received complex-valued signal into
desired binary values using RBF network equalizer. Results prove that the
RBF network provides very good bit error rates with acceptable computational
complexity. Performance comparisons are made to a linear equalizer, a
multilayer perceptron (MLP) network equalizer and to a Viterbi equalizer.

1. Introduction

In today’s mobile communication systems, the transmitted signal is subject to
various corruptions, caused by for example intersymbol interference (1Sl) due to
multipath propagation, mobile movement and noise [1]. The purpose of equalization is
to compensate for these channel influences so that the original information can be
found from the received corrupted signal. Adaptive equalization methods are needed,
since the channel response is usualy not known beforehand and it is often time-
varying. Additionally, equalization needs to be performed efficiently both in terms of
computational complexity and time consumed.

Neura networks [2] have been studied for equalization purposes with promising
results. However, not a lot of studies deal with real-world communication
environments, such as GSM [3]. Therefore, we have studied equalization with radial
basis function (RBF) networks in GSM environment. Here, instead of formulating
equalization as an inverse filtering or deconvolution problem, we have considered
equalization as a classification problem (e.g. [4-6]).

This paper is organized as follows. Chapter 2 introduces the GSM simulation
system. The studied RBF network is described in Chapter 3 and the obtained results
are discussed in Chapter 4. Final conclusions are then made in Chapter 5.

2. Simulation M odel

We have modeled the GSM system using Cossap software [7]. At the transmitter,
the information bits are first coded and arranged into bursts according to GSM
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Recommendations [8]. In this paper we have studied the use of GSM normal bursts
only. At the middle of each GSM normal burst there is a training sequence of 26 fixed
bits, also known as a midamble, which is known at the receiver end. The midambleis
surrounded by 58 information bits on it’'s both sides. Adding three tail bits on both
ends result to the total burst length of 148 hits.

In this study we have used three channel models; hilly terrain at mobile velocity
100 km/h (denoted HT100), typical urban at 50 km/h (TU50) and rural area at 250
km/h (RA250) [8]. Each model is presented by six taps, each determined by their time
delay and average power, and the Rayleigh distributed amplitude of each tap varying
according to a doppler spectrum. Prior to reception, zero-mean white Gaussian noise
with varying signal to noise ratio (SNR) is added to the signal.

At the receiver part the transmitted signal is first filtered with an adjacent channel
filter and sampled. This filtered complex-valued signal is then fed to the correlator,
which prepares the channel output to be equalized and also estimates the channel
response, if needed [7]. The resulted signal is now the input to our studied equalizers.

3. RBF Network Equalizer

The radial basis function network considered here, has a following structure. The
network has p inputs, meaning that at every time instant t, an input vector y; = [y(t+d),
y(t+d-1),..., y(t-p+1+d)]" is fed to the network. Here, y(t) is the complex-valued
output of the correlator and d represents delay. The hidden layer consists of an array
of computing nodes. Each node contains a parameter vector, called a centre. A
squared distance between the centre and the input vector is computed in each node.
This distance is divided by a parameter called a width and the following result is
passed through a nonlinear radia basis function, which in our case is Gaussian. The
output layer has a single output unit and it performs as a linear combiner with
connection weights w, resulting a following definition to our network:

z(t) =wp + gw exp( - i“y -G “2) (1)
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where Cy is the kth centre and sy is the width. The input vector y; is complex-vaued
and the centers are complex-valued vectors as well. However the output of the exp-
function is real and thus the connection weights are real-valued as well. The width
parameter was given a constant value, which is the same for each center. The weights
have been computed using the method of least squares [9]

w=F"dy #)

where the weight vector w = [Wo, Wa,..., W], d; is the desired output vector, * denotes
pseudoinverse and
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The centers for each computing node can be found from the midamble of the
transmitted burst using a nearest-neighbor-type clustering procedure given e.g. in [10,
11]. Following this procedure we create cluster centers for transmitted +1 and -1 —
bits. A distance threshold value Dy, determines whether we classify the received
sample to the nearest cluster center representing the correct binary value or create a
new center out of it. Thus, the value of Dy, also determines the total number of cluster
centers.

4. Simulation Results

We have transmitted 1000 consecutive bursts through a GSM simulation model
using Cossap software [7]. The equalization methods have then been studied using
Matlab software [12]. For each received burst, the equalizers were first trained using
the midamble and the information bits were then equalized without further adaptation.
Note, that the training is done separately for each received burst.

Two performance criteria for the studied equalizers were observed. First, the bit
error rate (BER), which is computed as the percentage number of incorrect decisions
made on the information sequence of each burst after equalization. The second perfor-
mance measure is the computational complexity, which is given in terms of the
number of most important floating point operations (flops) used for equalization.
Matlab counts flops as follows [12]; additions, subtractions, multiplications and
divisions are one flop each, if the operands are real. Two flops are noticed in the case
of complex operands. It should be noted, that Matlab counts for no flops in case of
comparison and search functions.

The RBF network equalizer was given five inputs and the delay was set to 2. For
all the computing nodes in the network, the width parameter was set to sy = 80 after
empirical tests. The weights of the network were computed using linear regression.
We made tests with varying values for the Dy, and also studied the influence of
applying the stochastic gradient algorithm [9] for updating the center locations and the
width parameters. However, the improvement in BERs was very small compared to
the increase in computational complexity.

In fact, the best results were achieved when Dy, was given value 0 in ailmost each
case. This means that the clustering algorithm creates centers out of each training
vector. The network has in this case 26 computing nodes. Since this is the case, we
can actually drop the clustering procedure and simply set the centers to be the same as
the training sequence vectors. The width parameters and the center locations are not
updated during the computation of the weights. This way we can decrease the total
computational load of the system and similarly, the actual time spent for computation.
The simulation results are given for thistype of RBF network equalizer.

For comparison purposes we have aso studied the use of a linear equalizer (LE),
an MLP network equalizer and a Viterbi equalizer. The weights of the complex-
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valued linear equalizer have been computed using linear regression. Five inputs with
delay of 2 was used here as well. The studied MLP network employs one hidden layer
with six hidden units and a single linear output unit. In the hidden layer split complex
activation function tanh was used [13]. Although the split complex activation function
can never be anaytic, it avoids the unboundedness of fully complex activation
function [14-15]. Furthermore, our previous studies have shown that it seems to work
quite well in our application [13]. The training has been carried out using the
backpropagation algorithm. The input vector is the same as for the RBF network.

Another benchmarking method that we have considered is based on Viterbi
algorithm (VA) [16]. Unlike the previously described methods, this Viterbi equalizer
needs to have an estimate of the channel response. This is done using a correlation
approach given in [7]. For each burst five channel coefficients are computed for
estimating the response. The VA models the channel as a finite state machine having
16 states and to each state one can arrive from two states. For each arrived sample, we
compute the Euclidean distance between the received signal and all the possible
reference signals, which represent here a five symbol sequence (4 bits for the states
and 1 bit for the transition) multiplied with the estimated channel coefficients. For
each of the 16 new states, the VA selects the most likely transition to the new state by
comparing the accumulated path metrics of the two predecessor states plus the so
caled branch (transition) metrics. After al the 148 received samples of the burst are
processed as described above, the Viterbi equalizer has stored one decision and one
metric difference for each of the 16 states at each sample time. The VA then traces
back the best path. Notice, that the achieved results with the Viterbi equalizer are
obtained without any use of decoding.

Tables 1.-3. show the BERs obtained with each method in the studied three
channel models with SNR 5, 10 and 20 dB. As can be seen, the RBF network
equalizer provides the best BERs when there is a lot of noise present. However, when
the noise decreases, the Viterbi equalizer provides the smallest BERs. The
performance of the MLP network equalizer is quite close to the Viterbi equalizer
when SNR is 5-10 dB. The linear equalizer is clearly the worst performer.

Finaly, Table 4 summarizes the computational complexities of the studied
methods. The figures in the first column of this Table are average number of flops
used over 1000 bursts. The linear equalizer is clearly the most efficient one in terms
of computational complexity, but as was shown, it also provided the worst bit error
rates. The RBF network seems to require significantly less computation than the MLP
network. This is mainly due to the extensive training required by the MLP network,
wheresas linear regression can be applied for the RBF network. The applied Viterbi
equalizer required surprisingly little computation in terms of flops, even though it is
often described as computationally demanding in publications. However, one must
notice here, that Matlab does not count any flops for operations like comparison and
search, which are often used in VA. Therefore, we have also added another row to
Table 4, which gives the actual time spent for performing the equalization task for
1000 bursts in TU50-channel with SNR = 5 dB, using Matlab version 5.3 with
Pentium 111 600 MHz processor. There we can see a clear difference between the
complexity of the LE and the VA.

We have also made some preliminary tests on using the channel estimatesin RBF
network equalization. Since the channel estimates are available in GSM, it seems
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worthwhile to take advantage of them, when locating the centers in RBF network.
However, we are till working on this al gorithm.

TABLE 1. Bit error rates for the studied methods in HT100-channel.

SNR/Method LE MLP VA RBF
5dB 1352% | 12.23% | 11.94% | 11.00%
10dB 7.01 % 574 % 4.86 % 514 %
20 dB 2.72% 2.02 % 0.74 % 1.76 %

TABLE 2. Bit error rates for the studied methodsin TU50-channel.

SNR/Method LE MLP VA RBF
5dB 1250% | 10.64% | 10.43% 9.61 %
10dB 5.61 % 4.25% 3.76 % 3.92%
20 dB 1.15% 0.95 % 0.58 % 0.88 %

TABLE 3. Bit error rates for the studied methodsin RA250-channel.

SNR/Method LE MLP VA RBF
5dB 10.59 % 8.83% 8.93% 7.89 %
10dB 4.64 % 3.54% 3.45% 3.10%
20 dB 0.83 % 0.74 % 0.80 % 0.77 %

TABLE 4. Computational complexities given as the average number of flops required to

equalize one burst and as actual time spent for equalizing 1000 bursts.

Method LE MLP VA RBF
Flops | 2.9*10* | 1.5¢10" | 4.010* | 4.7*10°
Secs 11.9 237.3 48.3 66.2

5. Conclusions

We have studied adaptive equalization in the GSM environment. Since
equalization can be seen as a classification problem, neural networks offer one
possibility to this task. RBF networks have been used for many classification tasks
and they also proved to work very well in this application. Their performance in terms
of bit error rates was found to even outperform the applied Viterbi equalizer in cases
where there was a lot of noise present. In addition, the computational complexity of
the RBF network equalizer was clearly smaller than that of the studied MLP network
equalizer. However, the applied Viterbi equalizer outperforms the RBF network in
both floating point operations required and actual time spent for computation. This
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issue needs to be addressed before the RBF network can be truly considered as a
realistic aternative to Viterbi. Future studies will be made on applying the channel
estimates for the RBF network. Nevertheless, RBF networks seem to provide
interesting results for this application.
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