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Abstract - A test bed of experiments with real and artificially generated data
has been designed to compare the performance of three well-known
algorithms for BSS. The main goal of these experiments was to extract some
guidelines for their use in practical applications concerning their efficiency,
accuracy, convergence speed, stability, and robustness under the presence of
Gaussian noise and in presence of a large number of source signals.

1. Introduction

Blind source separation (BSS) is a technique, which allows separating a number of
source signals from observed mixtures of those sources without a previous
knowledge of the mixing process [1]. A lot of attention have been aroused in these
techniques in recent years with an increasing number of existing approaches.
However, much less attention has been received the comparison of performance
between BSS algorithms for sensor array applications since researchers usually focus
their comparison on particular aspects using simple data sets.
In this work, we propose a test bed of experiments to compare BSS algorithms based
on the linear BSS model. In particular, we compare three well-known BSS
algorithms (Fast ICA, JADE and eeA) applied to artificial and real data including
data extracted from an Ion-sensitive field effect transistor (ISFET) sensor array.
The rest of this paper is organised as follow: the principles of BSS, the evaluated
algorithms and the comparison criteria are introduced in section 2. Performance
measures for the BSS algorithms are introduced in section 3. In section 4 the
benchmarking and experiments are presented. Discussion is included in section 5.

2. Blind Source Separation

Assume that M is the number of source signals, they are unknown and mutually
independent of zero mean and are denoted by a random vector s = [s1,….,sM]; the
observations x, are samples from the linear transformation of these independent
sources via an unknown matrix, such a:

Asx = (2.1)
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Where A is the unknown mixing matrix. The goal of BSS is to estimate the original
sources s given only the observations x, from the realistic assumption of the
independence of the sources. The estimation of independent sources y is done by means
of the demixing matrix W as follows:

WAsWxy == (2.2)
Where W = A-1. However, the simple independence condition is not enough to
recover the exact order or scale of the sources, so the demixing matrix has the
formW=PDA-1, where P is a permutation matrix and D = diag (d1, d2, d3, …dn) is a
diagonal matrix for arbitrary scaling. Following we present the compared algorithms.

Fixed-point (FP or Fast ICA) algorithm [2]: Based on maximising non-gaussianity
by means of minimising negentropy (or maximising the absolute value of
negentropy). Thus, under the whiteness constraint, minimising the mutual
information between entries of y is equivalent to minimising the sum of the entropies
of the entries of y. Mixing the entries of s tends to increase their entropies. So, we
need to find separated source signals as those with minimum marginal entropies. The
algorithm is based on the Newton’s optimisation method, which make very fast the
convergence, and different non-linearities (tanh (u), u3 and exp(u2/σ)) can be
employed  in order to compute the independent components

Joint Approximate Diagonalisation of Eigenmatrices (JADE) algorithm [3]:
While the fixed-point algorithm optimises a transform of the data, JADE optimises
the transform of a particular set of statistics about the data. JADE measure the mutual
information between cross-cumulants. Second order cumulant is used to decorrelate
the data, i.e., to obtain a whitening matrix Ŵ . The separation matrix is estimated as

WV ˆ·' , where 'V  is a rotation matrix used to make the cumulant matrices as diagonal
as possible according to an specific contrast function, which is the sum of squared
fourth order cross cumulants from the cumulants matrix. To make the cumulants
diagonal as possible is the same that makes the data as independent as possible, so
the matrix that performs the diagonalisation of cumulants can be used to perform the
separation on the mixed data.

Extreme Event Analysis (eeA) [4]: based on nonholonomic-nested Newton’s
methods for ICA. This method factorises the Newton’s method to minimise sum of
squared fourth order cross cumulants between components. It does not prewhiten the
observed data and uses solely the fourth order statistics. It is related to the
nonholonomic method (extension of the natural gradient method introducing the so-
called nonholonomic constraints). The nonholonomic constraints in the natural
gradient method allow resolving the non-stationary source signals problem. It is
expected a fast convergence when the number of observation channels be quite large
because of the method to determine the demixing matrix, and a better computational
load.

2.2. Comparison criteria and Measures
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To ensure that an algorithm can be implemented in a sensor array-based
microsystem, there where taken into account the measures on table 1.

Comparison criteria Performance Measure
Accuracy  PI (as defined by equation 3.1) and SNR

Robustness under the presence of
added Gaussian noise

PI and SNR

Robustness under the presence of
Gaussian sources

PI and SNR, when Gaussian sources replace the
original sources

Stability PI and SNR at different stopping criterion
Efficiency PI and SNR at varying number of sources

Computational Load Convergence speed
Number of tuneable parameters

Table 1. Comparison criteria and measures.

3. Performance Measures

Once the separating matrix W was computed, we can check the separation quality
using the measure so-called performance index (PI) proposed in [1] as:
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Where pij denotes the component of the ith row and the jth column of P=(pij)=AW.
The second measure of separation quality used was the SNRs of the separated
outputs. The equation describing the SNR is:
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Where s (t) is the desired signal and n (t) = y (t) – s (t) is the noise indicating the
undesired signal. y (t) is the estimated source signals.

4. Benchmarking and comparison criteria

Accuracy and computational load: comparison of the dependence of the separation
quality and convergence time on the training data size. Data was introduced by
means a partition into sixteen no overlapped data sets, each one with a different size
using a window method. Permutation of the demixed signals was made after every
iteration (computing PI, SNR and convergence time for each data set) in order to
ensure that the first separated source be on the first output vector. To study the
behaviour of batch algorithms, the partition was repeated overlapping the data sets at
20%, 50% and 90% overlapping ratios.
Noisy mixtures: To study the effect of additive noise on the separation quality, we
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added to the mixtures the white Gaussian noise vector n, according to x=As+n, with
variance from 0 to 1 in 0.01 step size. The comparison was done for SNR > 30db (zero
noise limit) and for SNR less than 20db. The noise influence in the mixtures was
controlled in two different ways, introducing four different noise components to each
sensor signal and introducing the same component of noise to all signals.
Efficiency and Stability:  The number of sources was increased to compare the
efficiency. Since its assumed that signals are non-Gaussian, we compared the results
when sub-Gaussians and super-Gaussians source signals were introduced. Stability was
compared varying the number of iterations (500-1000) and the stopping criterion for FP
and eeA algorithms from 0.0001 to 0.001. JADE it was not compared with this criteria.

4.2  Numerical Experiments

Experiment 1. Performance on artificially generated data: four artificially generated
source signals (5000 points), two periodic deterministic signals, one impulsive noise and
a random Gaussian signal were mixed using a randomly generated matrix to obtain a 4
dimensional observation vector.

Experiment 2. Performance on real data with artificial mixing: A set of 17000
samples of real recording  sounds were mixed using a randomly generated mixing matrix.

Figure 1. SNR of separated signal (sub-Gaussian source) at different data set sizes for exp. 1. FP
using tanh (squares),  JADE (circles), eeA(solid line).

4.3 Experiment 3. Performance on real data with real mixing: Using the response
of three ISFETs sensors (5000 points), where the source signals are the ionic
concentrations in an aqueous solution. Simulation was done according to the device
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Electro-chemical model [5] [6]. The ISFETs array mixing system have been
considered linear instantaneous, i.e., biasing the devices in the linear region and
working in the range of ionic concentrations, which generates a linear response [5].

5. Simulations and Conclusion

A comparative study between the three algorithms for BSS reviewed in section 2 has
been performed using the test set proposed in Section 3 considering (number of
sensors ≥ number of sources). The artificial mixing matrix was chosen to be nearly
singular simulating the situation where sensors are located very close to each other.
From the results of the experiments, which are summarised on fig. 1 and tables 2 and
3, the below considerations can be made.

Algorithm
Non-

linearity
used

PI
5000

points
(x10-3)

Mean
SNR
(dB)

Max.
SNR
(dB)

Algorithm PI
5000

points
(x10-3)

Mean
SNR
(dB)

Max
SNR
(dB)

FP -
(Tanh)

9.34 1.49 3.26 FP -
(Tanh)

3.11 21.03 33.4

FP - (u3) 5.82 1.90 6.24 FP - (u3) 4.75 16.88 28.5
FP-

exp(u2/σ)
2.20 2.68 4.64 FP-

exp(u2/σ)
4.28 15.70 36

JADE 6.3 2.87 6.21 JADE 5.7 13.02 34
eeA 1.84 4.19 8.94 eeA 82.7 8.21 24

Table 2. Accuracy from experiment 2 for noisy Table 3. Accuracy from
Mixtures when SNR equal to 15db. Experiment 3.

Accuracy and efficiency: the SNR (see fig. 1) increases slow and PI decreases slow
when the number of samples is larger than 3000 points for sub-Gaussian sources.
However, the convergence time increases considerably when sample size is larger
than 4000 points. The better relation between accuracy and convergence time can be
achieved using data sets with 2500 points for sub-Gaussian sources while 8800
points (for JADE) and 10000 points (for FP(exp(u2/σ)) and eeA) are good for speech
signals (super-Gaussian). When the number of sources is increased, the efficiency of
the eeA algorithm is lightly better than the other algorithms, that’s because of the
determination of the demixing matrix is computationally much cheaper for large
number of sources N. JADE requires an eigenvalue decomposition of the N2 x N2

cumulant matrix and the storage required for all the 4th-order moments become
impractical for implementations with large data sets (depending on the available
memory). FP using sequential extraction approach shows the poorest efficiency
under the presence of more than 6 sources, its accuracy improves when symmetric
approach is used. From table 3, FP using gauss (exp(u2/σ)) nonlinearity and JADE
presented high accuracy compared with eeA (even at reduced sample sizes). There
was not significant accuracy improvement ovelapping the data sets in the batch
training.
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Robustness under Gaussian noise: All algorithms for BSS that require whitening
are sensitive to additive noise because of  the use of the equal-time correlation matrix
(corrupted by noise). Table 2 shows the mean and the maximun value of the SNR
(for the whole data) and the PI (for 5000 points). Based on the results, the use of only
fourth order cumulants, which are non sensitive to the Gaussian noises, make the
nested Newton’s method the most robust under their presence for SNR between 15
and 20dB. For SNR >28 dB the eeA algorithm accuracy is not much better than FP
and JADE, and for SNR < 15 dB separation of the Gaussian noise from sources is not
achieved. Chosing the mixing matrix to be singular make the algorithms more robust
under the presence of small gaussian noises. For medium level Gaussian noises, a
whitening method based on the use of the time-delayed correlation matrices (not
sensitive to the additive with noise) was used. When the whitening method was
applied, at low SNR, the algorithms gives slightly better performance.
Computational load and stability: The FP algorithm shows the better convergence
time for all the experiments (previous tuning) in contrast with eeA (which shows the
bigger computation time) and JADE. The advantage of JADE is that the use of cross-
cumulants do not require gradient descent techniques for optimisation avoiding
convergence problems and it has not tuneable parameters because the learning is
based in a statistical way rather than a data domain. FP using tanh and (exp(u2/σ)) as
nonlinearties shows the better stability under the presence of super-Gaussian sources.
The computational load of FP algorithm is smaller than the other algorithms.
Effectiveness in presence of Gaussian sources: For more than two Gaussian
sources, the algorithms have very poor performance, especially eeA, because they
cannot find the directions of the columns of the mixing matrix in order to locate the
edges of the joint density of the observations, when the maximisation of the measure
of nongaussianity is done. For achieve Gaussian sources separation, it is necessary to
use algorithms based on the information about the time correlation structure of the
data.  An extended graphic results presentation can be found at:
www.geocities.com/guillermoledor2/bss_isfet.html.
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