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Abstract

This work presents a learning algorithm to reach the optimum action of an

arbitrary set of actions contained in IRm. An initial and arbitrary probability mea-
sure on IRm allow us to select an action and the probability is sequentially updated

by a stochastic automaton using the response of the environment to the selected

action. We prove that the corresponding random sequence of probability measures
converges in law to a probability measure degenerate on the optimum action, with

probability as close to one as we desire.

1. Introduction

From a general point of view, learning is defined as a change in behaviour as result of the

past experience. From a mathematical point of view, the goal of a learning system is the

optimization of a functional not known explicitly (Narendra and Thathachar (1989)).

From the initial works of Bush and Mosteller (1958), Atkinson, Bower and Crothers

(1965) and Vorontsova (1965), the learning problem has concentrated the attention of

many researchers. The stochastic automaton acting in a stationary random environment,

which has received considerable attention in literature (Fu (1966); Lakshmivarahan and

Thathachar (1972); Narendra and Thathachar (1989)), is the goal of this work.

Depending on the allowable values of the output of the environment, different

models have been defined. If the response of the environment takes on two values the

model is called P-model. If the response takes on a finite set of actions, we define the

Q-model. Finally, if the response takes on values in a continuum, the model is called S-

model. All these learning models deal with a binary space of actions which are the input

to the environment. All the learning algorithms in literature are not directly generalized

to a finite space of actions. In any case, to my knowledge, there are no previous works

concerning a non-discrete space of action. This work presents a stochastic learning

automaton when the set of allowable actions is an arbitrary subset of IRm
.

The main evaluation criterion for learning algorithm is based on optimality

(Lakshmivarahan (1981); Narendra and Thathachar (1989)). When the space of actions

is finite, the study of the optimality involves the convergence of a sequence of finite

dimensional vectors of probability to a unitary vector (associated with the optimum

action). In this work, where the space of actions is non-discrete, the optimality involves

the convergence in law of a sequence of probability measures on IRm
to a probability
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measure degenerate at the optimum action.

As in the case of a finite account of actions (Lakshmivarahan and Thathachar (1973);

Lakshmivarahan and Thathachar (1976a); Lakshmivarahan and Thathachar (1976b)), in

the non-discrete case the absolute expediency implies ε-optimality and in this paper a

necessary and sufficient condition for the absolute expediency of the learning algorithm

is determined.

The generalization of this work to Q- and S-model is straightforward and it could be

made as in the case of finite space of actions (Narendra and Thathachar (1989); Najim

and Poznyak (1994); Baba (1985)).

2. Reinforcement scheme

Let A ⊆ IRm
be a set of allowable actions. These actions are performed on an

abstract random environment, which responds to the input action by producing an output

belonging to the set of allowable output B = {0,1}. An output β = 1 is identified with
an unfavorable response and β = 0 with a favorable response of the environment. The
input α (n) ∈ A is applied to the environment at discrete time t = n (n = 0, 1, 2,3...).
The outputβ (n) ∈ B is the response of the environment at time t = n. The set of output
B is probabilistically related to the input actionsA through a set of penalty probabilities

C = {cα|α ∈ A}, such that cα represents the unknown probability that the application

of an action α to the stationary environment will result in a penalty output β = 1,

cα = P (β (n) = 1|α (n) = α) , α ∈ A.

Learning involves the performance of experiments on the environment to choose input

actions and to use the output data to update the strategy for picking a new action. An

automaton is a systematic strategy of choosing the input actions from the outputs of the

environment to increase the occurrence of favorable responses, that is, to increase the

occurrence of the actions that minimize cα.
In this work we assume that (A,F , Pn) is a probability space and Pn describes the

probability of selecting an action of A at time t = n. The stochastic automaton is the

mechanism that updates the probability measure Pn to Pn+1, using the action α (n) and
the response β (n) obtained from the environment. Concretely, the automaton that we

propose has the following form

Pn+1 = Pn +Φ(Pn, α(n)), if β(n) = 0 (1)

Pn+1 = Pn if β(n) = 1,

where Φ(Pn, α(n)) is a σ-additive, non null and finite set function, such that for all

A ∈ A it fulfils

Φ(Pn, α)(A) ≥ 0 if α ∈ A

Φ(Pn, α)(A) ≤ 0 if α /∈ A.

This is a type of conservative stochastic automaton that changes the probability of

selecting an action only when the response of the environment is favorable. Note that if

Pn is degenerate thenΦ(Pn, α) ≡ 0, for every α ∈ A. From the Jordan decomposition
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we can write

Φ(Pn, α) = ε(Pn, α)(δ(α)−Ψ(Pn, α)), (2)

where 0 < ε(Pn, α) < 1, Ψ(Pn, α) is a probability measure on (A,F) and δ(α)
is a probability measure degenerate at α ∈ A. Note that if Pn is degenerate then

ε(Pn, α) = 0, for every α ∈ A.
Throughout the rest of the paper we assume that ε(Pn, α) and Ψ(Pn, α) do not

depend of α, that is ε(Pn, α) = ε(Pn) and Ψ(Pn, α) = Ψ(Pn). Assuming this

condition, the stochastic automaton proposed in (1) generalizes the usual definition

of the reinforcement scheme of the stochastic automata in a finite space of actions

(Narendra and Thathachar (1989); Lakshmivarahan (1973)).

3. Characterization of the absolutely expedient schemes

The average penalty for a given action probability measure is a random value defined

as

M (n) = E (β(n)|Pn) =

∫
A

cαPn(dα).

A learning automaton is said to be absolutely expedient if

E (M(n+1)|Pn) <M(n),

for every n ∈ IN and penalty probabilities {cα : α ∈ A}. The absolute expediency

assures that the expectation of the average penalty is decreasing, that is,

E (M(n+ 1)) < E (M(n)) .

In this section a necessary and sufficient condition for absolute expediency is given.

The following theorem generalizes the characterization given in Lakshmivarahan and

Thathachar (1973) for a finite space of actions.

Theorem 1 A learning automaton given by the general reinforcement scheme (1) is

absolutely expedient, if and only if, Ψ(Pn) = Pn. In this case, the reinforcement

algorithm is given by

Pn+1 = [1− (1− β(n)) ε(Pn)]Pn + [(1− β(n)) ε(Pn)] δ(α).

Proof: The reinforcement scheme (1) can be written as

Pn+1 = Pn + (1− β(n)) Φ(Pn, α(n))

and, then

E (M(n+ 1) −M(n)|Pn) = E

(∫
A

cα(1− β(n))Φ(Pn, α(n))(dα)|Pn

)
.

From the decomposition (2) we can write

E (M(n+ 1)−M(n)|Pn)

=

∫
A

(1− cα1)

∫
A

cαΦ(Pn, α1)(dα)Pn(dα1)

= ε(Pn)

∫
A

(1− cα)cαPn(dα)− ε(Pn)

∫
A

(1− cα)Pn(dα)

∫
A

cαΨ(Pn)(dα).
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Sufficient condition: If the condition Ψ(Pn) = Pn is fulfilled, the algorithm is

absolutely expedient, since

E (M(n +1)−M(n)|Pn) = −ε(Pn)

[∫
A

c2αPn(dα) −

(∫
A

cαPn(dα)

)2]
≤ 0.

The equality is reached if and only if cα = c, Pn-a.s., that is, if and only if there exists
a constant c ∈ [0, 1], such that Pn {α ∈ A : cα = c} = 1.
Necessary condition: Assume that E (M(n+ 1) −M(n)|Pn) ≤ 0, where the
equality is fulfilled if and only if cα = c, Pn-a.s. Then∫

A

(1− cα)cαPn(dα)−

∫
A

(1− cα)Pn(dα)

∫
A

cαΨ(Pn)(dα) ≤ 0,

for every set of penalty probabilities {cα : α ∈ A}. Take an arbitrary A ∈ F , such that
0 < Pn (A) < 1, and define cα = x if α ∈ A and cα = 1 − x if α /∈ A, for a fixed
0 < x < 1. Then, the quadratic function

H (x)

= x(1− x)− (Pn(A) + x(1− 2Pn(A)) (1−Ψ(Pn)(A) + x(2Ψ(Pn)(A)− 1)) ≤ 0

has an unique maximum atx = 1/2. Then d
dx
H (x) |x=1/2 = 0, producesΨ(Pn)(A) =

Pn(A), for every A ∈ F .�

4. Convergence and optimality

When the learning algorithm (1) is absolutely expedient the sequence {M(n)} is a non-

negative, upper bounded submartingale. Then,M(n)
a.s.
→ M(∞) and

ε(Pn)

[∫
A

c2αPn(dα) −

(∫
A

cαPn(dα)

)2]
a.s.
→ 0. (3)

Let us assume the following conditions:

(i) ε(P ) is continuous. ε(P ) = 0 if and only if P is a degenerate probability measure.

(ii) c (α) = cα is a continuous function, such that, c (A) is a compact subset

contained on [0, 1] and for every fixed b ∈ [0,1] the set {α ∈ A|c (α) = b} is finite.

The following theorem shows that under the absolutely expedient condition the

algorithm (1), almost surely, converges in law to a degenerate probability measure.

Theorem 2 Under conditions (i) and (ii), if the scheme (1) is absolutely expedient, the

random sequence of probability measures {Pn} converges in law to P , almost surely,

where P is degenerate or there exists b ∈ [0,1], such that P {α ∈ A|c (α) = b} = 1.

Proof: Under absolute expediency, the convergence (3) is fulfilled almost surely. If

ε(Pn)→ 0 the theorem is obvious. Otherwise,

En(c
2
α)− (En(cα))

2 =

∫
A

(cα −En (cα))
2
Pn(dα)→ 0,

whereEn (cα) =
∫
A
cαPn(dα). Using the Tchebychev Inequality, for every fixed δ > 0
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and ε > 0, we can obtain

Pn (α ∈ A : |cα −En (cα)| ≥ δ) < ε, ∀n ≥ n0.

Since En (cα) =M(n)
a.s.
→ M(∞), we can write

Pn (α ∈ A : |cα −M(∞)| ≥ δ) < ε, ∀n ≥m0

and

lim
n→∞

Pn(α ∈ A : |cα −M(∞)| ≥ δ) = 0. (4)

Let us denote

{α1, ..., αk} = {α ∈ A : cα =M(∞)} .
Let g (α) be an arbitrary continuous and bounded real function for α ∈ A. From (4) it

is easy to prove that

lim
n→∞

∫
A

g(α)Pn(dα) =
k∑
i=1

g(αi) lim
n→∞

Pn(B
ε
αi
),

where Bε
αi

are disjoint neighbourhood of αi, such that

{α : |cα −M (∞)| < δ} =
k⋃
i=1

Bε
αi

and

|g(α)− g(αi)| < ε, for every α ∈ Bε
αi
.

Since limn→∞ Pn

(
k⋃
i=1

Bε
αi

)
= 1 for every ε > 0, also

k∑
i=1

limn→∞ Pn(Bε
αi
) = 1,

for every ε > 0. Note that Bε
αi

decrease as ε→ 0 and then the former property implies

that limn→∞ Pn(Bε
αi
) = pi, without dependency of ε in the limit.

In conclusion, we have proved that

lim
n→∞

∫
A

g(α)Pn(dα) =
k∑
i=1

g(αi)pi,

for every function g(α). This is equivalent to saying that Pn
L
→ P , where P is

a probability measure concentrated in {α1, ..., αk} and P ({αi}) = pi, for every
i = 1, ..., k.�

Concerning the optimality of the learning algorithm, we say that a reinforcement

algorithm is optimal if Pn
L
→ P , where P is a probability measure degenerate at the

points {α0 ∈ A : cα0 = infα∈A c (α)}.
In the former theorem we have proved that the absolutely espedient algorithm (1)

converges to a degenerate probability measure. The next theorem shows that it is always

possible to select step sizes ε (Pn), such that the limit probability P is degenerate at the

optimum actions, with probability as close to one as we desire.

Theorem 3 Let B0 be an arbitrary neighbourhood of the optimum actions and fix a

value 0 < p < 1. Then we can select step sizes ε (Pn) such that the probability that

Pn
L
→ P is greater than p, where P is a degenerate probability measure concentrated
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on B0 (that is, P (B0) = 1).
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