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Abstract. We present an application of generalized relevance learning
vector quantization (GRLVQ) to the supervision of piston compressors
in industry. Thereby, GRLVQ constitutes a prototype-based clustering
algorithm with adaptive diagonal metric based on LVQ. In the reported
application, further adaptation of the distance measure is necessary in
order to allow invariance with respect to small time shifts. Depending
on the respective sensors, very good classification results are obtained.

1. Introduction

Neural networks constitute a well-established tool for various application areas
in industry such as robotics, medicine, financial engineering, control, and mon-
itoring [3]. Since learning vector quantization (LVQ) as proposed by Kohonen
is based on prototypes, it is particularly suited for application areas where prior
knowledge is available or humans should gain insight into the classification be-
havior. Industrial applications of LVQ as well as improvements of the basic
learning algorithm are reported in Kohonen’s book on self-organizing maps [6].

Being a metric based approach, LVQ is highly sensitive with respect to data
representation and the induced Euclidian metric. LVQ fails if the metric is not
appropriate which is very likely for high-dimensional or highly heterogeneous
data, for example. Hence effort has been done in order to substitute the stan-
dard Euclidian metric by data adapted alternatives such as metrics which result
in clusters of specific shapes in the case of fuzzy clustering [5] or metrics which
take auxiliary information into account in the case of unsupervised processing
[7]. Generalized relevance learning vector quantization (GRLVQ) as introduced
in the article [4] modifies LVQ such that a very stable approach with adaptive
diagonal metric is obtained. We here report an application of GRLVQ to the
supervision of piston compressors in industry where heterogeneous data have
to be dealt with. Thereby, we introduce a further modification of GRLVQ to
account for the temporal structure of the data and to allow identification of
prototypes which are invariant with respect to small shifts.

2. GRLVQ with shift invariant distance

GRLVQ learns a prototype based classification given a finite set of training
examples. Denote by X = {(z%,y") e R" x {1,...,C}|i=1,...,m} the set of
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training examples. Denote by {w!,... wM} the set of prototypes with label
¢! = c assigned to w’ iff prototype w’ belongs to class c¢. Denote by Aq,..., A\,
relevance terms for the input dimensions with A; > 0 and > A; = 1. GRLVQ
alms at minimizing the cost function

=S (i)

where sgd(t) = (1 + exp( t))~1 denotes the logistic function. The term
dy(xt) = > A () — wy 712 denotes the squared weighted Euclidian distance of

z' from the nearest prototype w’ with y* = ¢/ and d (z°) = 2N (2} —wf)?

denotes the squared weighted Euclidian distance of z* from the nearest pro-
toype w¥ with y* # ¢X. E is small if the distance of the data points from
the closest correct prototype, w”, is smaller than the distance from the closest
wrong prototype, w’. Thereby, a weighted Euclidian metric involving rele-
vance terms JA; is used and the relevance terms A; are adapted during learning
to achieve a good classification accuracy. The denominator of the summands
appropriately scales the respective terms in order to allow stable behavior.
Training consists in a stochastic gradient descent on this error function with
respect to both, the prototypes w' and relevance terms \; [4]:
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Thereby, € and €’ are learning rates, A is the diagonal matrix with relevance
terms, and the relevance terms are in addition normalized after each step.
As pointed out in [4], the derivatives with respect to the prototypes contain
the Hebb terms of standard LVQ and additional scaling factors which account
for the stability of this approach. Similarly, gradients with respect to the
relevance terms contain plausible Hebb terms as introduced in [1] and additional
stabilizing factors. Note that this approach can be done online, allowing to deal
with huge data sets as well as new training data in a simple way.

The cost function F is usually multimodal. Hence the algorithm is sensitive
with respect to initialization of the prototypes and can easily get stuck in local
optima. Therefore, we use a dynamic approach. Thereby, one prototype for
each class is initialized in the cluster center. Additional prototypes are added
dynamically during training if the cost function has reached a plateau and a
significant number of errors still exists. The new prototypes are initialized in
the center of the misclassified points of the respective class. Monitoring a test
error during this procedure is advisable in order to avoid overfitting.

Data points we will deal with consist of several discretized periodic time
series which are measured by several sensors within one rotation of the piston
rod of a reciprocating compressor. Thereby, the same technical defect might
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express to different patterns over several rotations because characteristic fea-
tures might be subject to slight time-shifts or time-scales. Hence the adaptive
diagonal metric is to be further modified. Assume data are contained in a vec-
tor space of the form R™ x ... x R™ and enumerate the components of a data
point by & = (x1,..., %) where z; = (241, ..., %in,;) describes one time series,
i.e. one dimension of the sensor data for one rotation. Invariance with respect
to small shifts within z; can be achieved if we use the following local distance
measure for the comparison of two time-series:

ng

L 2
Dy R™ xR™ R, Di(ry) =3 2L +1)? Y Gtk )
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where indices are taken modulo n;. Note that this measure is no longer a
metric since it is not symmetric. One could easily use the symmetric function
D' (z,y)+ D% (y, ), instead; however, this is not necessary for our application.
L determines the size of a local window within which values are compared. Note
that all values of z are compared with one value of y within this window and
the distances are linearly weighted with decreasing values towards the borders
of the window. Hence time series x and y where characteristic features are
subject to a small time shift within the window size have still a small distance
from each other. The term 2(L + 1)? is introduced for normalization. We now
substitute the term d’j(z*) in E by the value

Z)\jDi(xi,w‘])
j=1

where w” is the closest prototype with the same label as 2% according to this
modified distance, and we substitute dy (x%) by the value

Z AjDi(xi,wK)
j=1

where w® is the closest prototype with a different label than z?. Prototypes
and relevance terms \; are adapted with stochastic gradient descent on E.
Naturally, alternative optimization methods could be used. Due to the fact
that few prototypes are necessary and hence E is a comparably simple function
in our application, a simple gradient descent is sufficient for our application.

3. Supervision of piston compressors

Supervision of piston compressors and early fault detection are desirable for
several reasons: severe damage can be prevented, idle times of the machines
can be minimized, and necessary repairs can be better organized. Large scale
industrial piston compressors vary from machine to machine with respect to
sensor data. Hence exact modeling of the process would be very time consum-
ing. Adaptive machine learning tools offer a valuable alternative. They can in
particular be trained for each machine with low cost and be further adapted to
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take the sign of wear of a machine into account. Further demands within this
context consist in the fact that machine learning tools should be understandable
for experts and it should be possible to assign a confidence to each classifica-
tion of a given data point. LVQ and variants offer insight into the classification
through the prototypes which constitute typical representatives for the several
classes and which can be interpreted by experts. A confidence level of the clas-
sification can be obtained by standard statistical methods. Alternatively, the
distance of the data point from the closest prototype compared to the distance
of the data point from the next prototype with different class can serve as con-
fidence level. Note that GRLVQ aims at optimizing this confidence level for the
given training set by the choice of E, whereas LVQ tries to optimize the clas-
sification accuracy directly. Of course, we could use alternative classification
tools such as the SVM for the given classification task. However, one condition
for our application is that the classifier can easily be interpreted by humans. In
contrast to the SVM, this is easily achieved by prototype based classification.
Moreover, LVQ likely shows very good generalization performance being, like
SVM, a large margin optimizer [2].

A typical piston compressor is equipped with several sensors which measure
pressure and oscillation at a rotation of the piston rod. Data are here monitored
in 36 segments of a full rotation and the mean and absolute value is stored for
each segment. Another time series is provided by the position of the piston rod.
Additional values which are used for classification are global quantities like the
various temperatures and characteristic values of the pV-graph. All values are
discretized into 5 segments which are determined from the data statistics for
each machine. The borders of the segments are chosen in such a way that
standard values of the machine roughly fall into segment 3, segments 1 and 2
indicate values which are smaller than the standard value, segments 4 and 5
indicate values which are larger than the standard ones.

Depending on the number of sensors, this preprocessing yields heteroge-
neous and high dimensional data which decomposes into around 25 time series
with 36 values each, 20 analysis yield one additional value, and around 40 ad-
ditional global features describe the machine. The different input dimensions
have a different impact on the fault classification. It can, for example, be ex-
pected that the pressure is more important for accurate failure detection than
the temperature of the system. Hence metric based approaches like LVQ with
the standard Euclidian metric will likely fail because they accumulate noise
of data dimensions which are of minor importance for accurate classification.
Adaptation of the metric is advisable. We use GRLVQ for the classification
because it shares the benefits of LVQ: classification can be interpreted based
on the prototypes, and the distance of a data point from the prototypes allows
to determine a confidence level of the classification. GRLVQ allows to auto-
matically adapt the metric and hence to overcome the problems caused by the
large input dimension. Thereby, the possibility of insight into the classification
is preserved since GRLVQ restricts to a diagonal metric such that the factors
A; can be interpreted as relevance terms for the classification. In addition, GR-
LVQ shows better stability than LVQ since it constitutes a stochastic gradient
descent on the cost function E. In addition, we have to substitute the Euclid-
ian metric for the comparison of time series by the shift-invariant version as
described above, because relevant features of the same failure can be found at
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expression 1 44444 444

5554444 554
expression 2 44444 444
556544 5565

expression 3 444444 4444
444554 4

Table 1: Different expressions of the same failure (sticking valve) within three
rotations of the piston rod. Characteristic features of the time series (entries 4
and 5 indicating too large values) are subject to small shifts. The shown time
series represent the discretized maximum and mean oscillation of the cylinder.
Segments with value 3 (= normal value) are left blank.

slightly shifted positions of the time series. This effect is partially caused by the
discretization of all values. As a consequence of this discretization, prototypes
are more expressive for humans and easier to process with machine learning
tools; however the process is not continuous and makes a slight shift invariance
of the metric necessary. See Tab. 1 for an example of the expression of the
same failure in two time series and three rotations of the piston rod.

4. Experiments

Data is taken from two 4-cylinder piston compressors with 20 sensors. Data
points decompose into 28 time series and 52 additional values. 14 different
failures have been observed yielding a total number of 65 training patterns for
failures. In addition, 8 data points expressing normal states of the machines
have been added. Data is randomly separated into training and test set. The
learning task is to predict all classes correctly. In all runs we used the shift
invariant metric with time window length L = 5 to compare time series. We
used dynamic prototype generation, iteratively adding prototypes for classes
which contain misclassified points. Training was stopped when a predefined
classification accuracy was achieved on the training set (95% for GRLVQ). In
this way, we obtained one or two prototypes for each class during training.
We trained standard LVQ, standard LVQ with relevance factors set by hand
according to expert knowledge, and GRLV(Q as presented in this paper. The
learning rate for the prototypes was set to 0.1 in all runs, the learning rate for
the relevance terms was set to 0.01. Results of 15 runs are reported in Table 2.

We also used LVQ with the standard Euclidian without relevance adaptation
and without shift invariance, which achieved a performance of at most 60%
on the test sets (results not reported in Tab. 2). LVQ with shift invariant
metric achieves a classification accuracy of only about 70% due to the high
dimensional data which accumulates noise. If expert knowledge is taken into
account and sensors are weighted according to their relevance by experts prior
to training, the classification accuracy increases by more than 10%. The result
of GRLVQ is even better and, in particular, automatically obtained during
training. Thereby, the relevance factors A; found by GRLVQ mirror the prior
knowledge of the experts: they emphasize signals corresponding to the pressure
with high values of \;, whereas relevance terms e. g. corresponding to the
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LVQ | LVQ + expert metric | GRLVQ

train test train test train test
(min-max) | (min-max) | (min-max) | (min-max) | (min-max) | (min-max)
machine 1:

69.6 66.7 91.6 81.6 98.2 97.2
(64.8-71.9) | (65.3-69.8) | (89.1-92.4) | (75.2-83.4) | (96.3-100) | (93.5-100)
machine 2:

72.3 65.3 92.1 84.5 99.1 97.7
(68.4-74.3) | (62.5-67.2) | (88.3-97.2) | (74.2-86.3) | (98.4-100) | (97.6-100)

Table 2: Training and test set accuracy (% correct classification) for two piston
compressors and several prototype based learning algorithms in 15 runs.

temperature vanish. Hence results obtained via training the relevance terms
yield very good accuracy compared to classification based on relevance terms set
by experts because the relevance terms are more precisely tuned for the specific
machine and respective classification task in automated relevance adaptation.

5.

We have presented an application of prototype based neural clustering to mon-
itor technical systems. Thereby, clustering based on the standard Euclidian
metric fails due to heterogeneous and high dimensional data involving several
time series. Hence we have used an extension of LVQ with adaptive metric,
GRLVQ, and we have further extended the basic ingredients of the metric by
components which are invariant with respect to small time shifts. The method
allows a good classification accuracy of more than 95% for two data sets taken
from two piston compressors. The proposed method is part of an industrial
system developed for online and offline supervision of piston compressors. The
neural classifier greatly reduces the necessity of human interaction in control,
while it preserves the possibility of human insight into the classification. Fur-
ther experiments will extend the method to adaptive relevance terms within
the time windows of time series, and adaptive quantization of the measured
sensor data, which is so far performed based on data statistics.

Discussion
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