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Abstract.

Martinetz and Schulten proposed the use of a Competitive Hebbian
Learning (CHL) rule to build Topology Representing Networks. From
a set of units and a data distribution, a link is created between the first
and second closest units to each datum, creating a graph which pre-
serves the topology of the data set. However, one has to deal with finite
data distributions generally corrupted with noise, for which CHL may
be unefficient. We propose a more robust approach to create a topology
representing graph, by considering the density of the data distribution.

1 Introduction

In many applications [1, 7], it is intended to represent the topology of a mani-
fold1 M ⊆ E only known through a finite set v of samples in a bounded domain
E ⊂ R

D. M is the support of the p.d.f from which the samples are drawn.
A way to do this is to define a set w ∈ E of N units, which tend to represent

the data distribution after a prior Vector Quantization (VQ) phase [6]. From
w, a set of links may be built to represent the topology of M, according to the
following idea [3, 7]: each unit wi is representative of the data for which it is the
closest unit among all the units of w. All these data fall in a region Mi which is
the intersection between the manifold M and the Voronöı region Vi of wi ∈ w
defined as : Vi = V(E,w)(wi) = {v ∈ E | ∀wj ∈ w, ‖v − wi‖ ≤ ‖v − wj‖} .

The only pieces of M which may be possibly connected to Mi are the
Mj for which Vj shares a common boundary with Vi, i.e. such that wj is a
natural (or Delaunay) neighbor of wi. If we construct DT(w) the Delaunay
triangulation [4] of w defined as the set of links lij which connect natural
neighbor units wi and wj whose Voronöı regions share a common boundary,

DT(w) = {lij ⊆ w | Vi ∩ Vj �= ∅} with lij = {wi, wj} (1)

then the set IDT(w,M) of links which best represent the topology of M, is a
subset of DT(w) (IDT stands for ”Induced Delaunay Triangulation” [7]) .

∗aupetit@dase.bruyeres.cea.fr
1In this paper, M is called a manifold for short, it is in general, a collection of manifolds

connected or not, which may have various intrinsic dimensions.
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The main problem which arises is now how to build IDT(w,M) of topology
representing links having in mind that M is not given but partly through v.

Edelsbrunner and Shah [3] proposed that a link is drawn between two nat-
ural neighbor units for which the intersection between M and their common
Voronöı boundary is not empty: IDTE&S(w,M) = {lij ⊆ w | Vi∩Vj∩M�=∅}.
However, the analytical expression of M must be known to test this condition2.

Martinetz and Schulten [7] present the Topology Representing Network
(TRN) and later under different assumptions Bruske and Sommer [2], the
Optimally Topology Preserving Map (OTPM), which both use the Compet-
itive Hebbian Learning (CHL) to build IDTCHL(w, v). They consider each da-
tum of v, searching its closest and second closest units in w, and then cre-
ating a link between both units: IDTCHL(w, v) = {lij ⊆ w | ∃v ∈ v, v ∈ Vij},
where Vij is called the 2nd-order Voronöı region associated to {wi, wj} with
Vij =

{
v ∈ E | v ∈ V(E,w\wi)(wj) ∩ V(E,w\wj)(wi)

}
(Figure 1a).

CHL is the only practical algorithm known to build an IDT from a finite
set of samples. However, it is prone to a series of limits:

• The connectivity of the manifold between two units is inferred from the
occurence of a single datum. It should be more robust to infer it from the
density of the data in the region of influence of the corresponding link,
which is here the 2nd-order Voronöı region.

• If the data set is corrupted with noise, the topology of the support man-
ifold including the noise will be represented, while it would be more in-
teresting to represent the topology of the principal manifolds, i.e. the
support manifold of the data distribution if there were no noise3.

• The 2nd-order Voronöı regions may have no intersection at all with their
corresponding edge. In other words, a dense connected manifold contain-
ing both extreme units of that edge (e.g. a straight line between these
units) cannot give rise to it: there is no self-consistency property.

• The desired IDT, as subgraph of DT, may define a set of k-simplices (k ∈
0 . . . N −1) which then represent k-dimensional pieces of M. However,
CHL cannot generates 0-manifolds4 represented by lonely units, because
for N ≥ 2, there always exists a first and a second closest units to a
datum, which therefore are linked together.

We propose to solve these problems by considering a two-phase approach:

• First, a Topological Graph TG(w, v) ⊆ DT(w) is created.

• Second, a pruning process of TG takes place according to a statistical
criterion depending on the empirical p.d.f of the data distribution. The
resulting graph is called IDTrobust(w, v).

2The Lebesgue measure of the intersection Vi ∩ Vj is 0, hence no finite sampling can be
useful to test the condition in practice.

3Assuming this noise is zero-mean Gaussian additive
4k-manifold stands for k-dimensional manifold
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Figure 1: (a) Boundaries of Voronöı (bold lines) and 2nd-order Voronöı (thin lines)
regions of a set of units (circles). (b) Gabriel Graph (bold lines) and boundaries of
Voronöı regions (thin lines) of its edges and vertices. (c) Example of data projection.

2 Building a topological graph

Computing DT(w) is known to be an intractable task for even quite small
D-dimensional space (computation in time O(N�D

2 �) [4])5.
In general D � 3, so we need a way to approximate DT(w) to get the

maximum number of links likely to be relevant for representing the topology
of M, before pruning irrelevant ones.

The IDTCHL is an appealing solution which generally has more topological
links than needed especially when data set is noisy. But it may miss some links
due to the too small size of the 2nd-order Voronöı regions in near degenerate
cases (Figure 2c-d). The Gabriel Graph (GG) [5] is a subgraph of DT(w) which
may be built in time O(D.N3): GG(w)={lij ⊆w|∀ wk∈w,dki+dkj >dij} with
dab = (wa−wb)2. GG(w) allows to get some of the links missed by IDTCHL,
because it does not depend on the density of v, but it may miss some links too
because it cannot create any obtuse or right triangles of DT(w) (Figure 2a-b).

We propose to define: TG(w, v) = GG(w) ∪ IDTCHL(w, v).

3 Pruning the topological graph

3.1 Region of influence and projection

In order to obtain the self-consistency property, we propose to set the region
of influence of the links as their Voronöı region Vlij

instead of Vij(Figure 1b):
Vlij

= VE,L,w(lij) = {v ∈ E | ∀x ∈ {L,w}, d(v, x) ≥ d(v, lij)} with

d(v, x) =




(v − x)2 , if x ∈ w
(v − vp)2, if x = lab ∈ L with vp =wa+kab(v)·(wb−wa)

where kab(v) =
〈v−wa|wb−wa〉

(wb−wa)2
and kab ∈ [0, 1]

5CHL does not need the prior construction of DT(w) avoiding this difficulty.
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Figure 2: GG misses (a) (finds (b)) a link that IDTCHL finds (c) (misses (d)).

where L is a set of links lij between wi and wj , and 〈.|.〉 denotes the inner
product. Thus, each link is entirely inside its Voronöı region. A link represents
the piece of M closest to it than to any other link or unit: it is the bounded
linear 1-manifold which best represents this part of M in the sense of the L2

distortion measure6.

3.2 A statistical criterion

Now, we consider all the data which project onto a link (Figure 1c) and we
propose a simple hypothesis to test if this link is worth being kept in TG(w, v).

A link which does not receive any data in its Voronöı region must be cleared,
exactly as the ”dead” units in the VQ framework. Moreover, it is possible to
refine the selection criterion by focusing on the distribution of the projections
onto the link: if there are more data which project on the middle part of the
link than near its both extremes, it is supposed that the underlying support
manifold has no ”hole” in that place, hence is connected.

Therefore, we compute a 3-bin histogram of the projections :

∀lij ∈ TG(w, v),




h1(lij , σ) = card({v∈{v ∩ Vlij
} | kij(v)≤ t12(σ)})

h2(lij , σ) = card({v∈{v ∩ Vlij
} | t12(σ)<kij(v)≤ t23(σ)})

h3(lij , σ) = card({v∈{v ∩ Vlij
} | t23(σ)<kij(v)})

(2)
with t12(σ) = 1

2 (1− σ) and t23(σ) = 1
2 (1 + σ). The link lij is kept if the bin h2

contains more data than the others:

IDTrobust(w, v, σ)=TG(w, v)\{lij ⊆TG(w, v)|h2(lij,σ)<max(h1(lij,σ),h3(lij,σ))}
(3)

with σ ∈ [0, 1] a global parameter allowing to tune the width of the middle
bin h2 for every links, hence the sensitivity of the pruning condition (3). For
σ = 0, all the links are cleared, while for σ = 1 they are all kept whatever v.

3.3 A heuristic to set the parameter σ

We propose a heuristic to set σ, by counting the total number Nl(σ) of links
in IDTrobust(w, v, σ) according to σ. Experimentally, a relevant σ is σ∗ ∈ [ 13 , 2

3 ]
closest to 1

3 , for which Nl(σ) reaches the largest plateau (Figure 3).
6in the same way as each unit wi ∈ w is the 0-manifold which best represents Mi.
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σnoise = 0 σnoise = 0.1 σnoise = 0.3

IDTCHL(w, v)

IDTrobust(w, v, σ∗)

Nl(σ)

Figure 3: Comparison between IDTCHL and IDTrobust on the spiral data set. The
beginning of the largest plateau (circle) in Nl(σ) for σ∈ [ 1

3
, 2

3
] gives σ∗.

4 Experiments

4.1 Noisy spiral data

We generate a 2-dimensional spiral distribution of 5000 data and add zero-mean
Gaussian noise with variance σ2

noise. We place 20 units using a Neural-Gas [6],
and compare IDTCHL(w, v) vs IDTrobust(w, v, σ∗) (Figure 3).

IDTCHL fails to represent the topology of the data set even without noise,
while IDTrobust succeed in that task even with large σnoise. The heuristic for
choosing σ∗ keeps being relevant for σnoise up to 0.3.

4.2 Noisy complex data

We generate a 2-dimensional distribution of 5000 data containing a 0-manifold
and a non-linear 1-manifold connected to a 2-manifold, and add zero-mean
Gaussian noise with variance σ2

noise. We place 32 units using a Neural-Gas and
compare IDTCHL(w, v) vs IDTrobust(w, v, σ∗) (Figure 4).

IDTrobust is again more robust than IDTCHL facing pure or noisy data.
IDTrobust is also able to represent 0-manifolds which is impossible for IDTCHL.
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(a)IDTCHL (b)IDTrobust (c)IDTCHL (d)IDTrobust

σnoise =0 σ∗ =0.4 σnoise =0.03 σ∗ =0.45

Figure 4: IDTrobust is less sensitive to noise and can represent 0-manifolds.

5 Conclusion

We present a new way to build Topology Representing Networks by creating
a topological graph and pruning this graph by taking into account the density
of the data which project onto each edge. This approach is less sensitive to
noise than the previous one proposed by Martinetz and Schulten [7], allowing to
closer represent the topology of the principal manifolds than that of the support
manifolds. It has the self-consistency property, and can represent 0-manifolds.

Experiments should be done in spaces of higher dimension and future re-
searches could be finding an even more efficient statistical criterion than the
one based on a 3-bin histogram we test. The definition of topology preservation
used in [2, 3, 7] should also be reconsidered in the light of this new approach.
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