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Abstract. This paper shows how clustering can be performed by
using support vector classifiers and model selection. We introduce a
heuristic method for non-parametric clustering that uses support vector
classifiers for finding support vectors describing portions of clusters and
uses a model selection criterion for joining these portions. Clustering is
viewed as a two-class classification problem and a soft-margin support
vector classifier is used for separating clusters from other points suitably
sampled in the data space. The method is tested on five real life data
sets, including microarray gene expression data and array-CGH data.

1 Introduction

Clustering is the problem of finding structure in the data by identifying groups
of objects that are more similar to each other than to objects in other groups.
The notion of similarity is domain dependent, so clustering is an ill-defined
problem for which many heuristic methods based on different approaches are
introduced (see e.g. [3] for a recent overview of clustering methods). Support
vector machine (SVM) is a powerful technique for classification and regression
[10]. In this paper we propose a method for clustering that uses a support vector
classifier for finding support vectors which represent portions of clusters. The
method searches for support vectors close to clusters cores. Each support vector
is used to construct a (portion of a) cluster. Then an information criterion is
used for merging nearby (portions of) clusters.

We view clustering as a two-classes classification problem, where class A
contains data elements while class B contains other points suitably generated.
Initially, class A consists of all the data, and class B consists of uniform points
randomly generated in the minimum hyper-rectangle containing the data. A
soft-margin support vector classifier is trained for separating A and B, and
the non-bounded support vectors SVA of class A are considered as candidate
representatives of (portions of) clusters. Next, SVA is removed from A, B is set
to SVA, and a SVM classifier is trained to separate the resulting new classes A
and B. The idea is that at each iteration the non-bounded support vectors of
the actual class A get closer to the cores of some clusters. At each iteration the
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same SVM parameters are used, with small soft-margin constant and kernel
width, resulting in few non-bounded support vectors. A heuristic criterion is
used for deciding when to stop the iterative process. The non-bounded support
vectors selected at the end of the iterative process are used for building clusters
by assigning each data point to the closest support vector. Finally, near clusters
are merged using a model selection criterion.

We conduct experiments on real life data sets to test the effectiveness of
this clustering method. We focus mainly on real life data sets from biological
experiments, in particular microarray gene expression data and array-CGH
data. The results of the experiments are satisfactory and indicate that support
vector classifiers can be used in combination with a model selection criterion
for clustering.

Related Work

The use of SVM for clustering has been recently proposed by Ben-Hur et al. [2].
However, they view clustering as a one-class classification problem, where the
data is distinguished from the rest of the feature space [6, 7, 9, 10] by finding a
sphere with minimal volume enclosing the data. The boundary of the sphere in
the input space forms a set of closed contours which are interpreted as clusters
boundaries, where the interior of each closed boundary forms a cluster. The
authors introduce a heuristic algorithm for finding these clusters, based on the
observation that two points belong to the same cluster if all the points on the
line segment connecting them lie in or on the sphere in the feature space.

A recent method that incorporates model selection as a decision test in
a clustering algorithm has been introduced by Pelleg and Moore [5]. The
authors propose a non-parametric clustering algorithm called X-means, where
a clustering is incrementally constructed by splitting clusters and using BIC as
criterion for accepting the splittings. The algorithm is an extension of K-means
with efficient estimation of the number of clusters.

2 The Clustering Algorithm

The clustering method employs a soft-margin SVM classifier with Gaussian
kernel

K(x, y) = e−σ||x−y||2

with width parameter σ. In the input space the points for which the SVM
decision function is equal to 1 describe boundaries enclosing the data. Support
vectors lay on or outside these boundaries, where non-bounded support vec-
tors1 lay on these boundaries. The SVM parameters C and σ affect the form
and smoothness of the boundaries. Small values of C and σ induce smooth
boundaries with few non-bounded support vectors and more bounded ones.
Non-bounded support vectors can be viewed as representatives of portions of
clusters. Clusters can be obtained by joining these portions using a model

1a support vector is non-bounded if its Lagrange multiplier is smaller than C
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selection criterion such as the Bayesian information criterion (BIC) [8]. Ac-
cording to this criterion, the most probable model is the one that maximizes
the log-likelihood of the model given the observed data minus a term which
takes into account model dimension.

Here a model is a clustering Cl = {Cl1, . . . , Clk} of X. We use a scoring
function of the form

score(Cl) = −2log-likelihood(X) + λN,

where N is the number of free parameters of the model and λ is a penalty
weight. (In our experiments we use λ = 5.) For the data experiments de-
scribed in Table 1 below we formed the likelihood under the assumption that
the elements of each cluster are sampled from a spherical Gaussian distribution,
with the mean vector depending on the cluster, but the same variance for each
cluster. The smaller the score the better the model. We will compare cluster-
ings using score for deciding whether to join two clusters and also to choose
a clustering amongst those generated by running the clustering algorithm a
number of times with different initializations of B (see Step 1 below).

A high level description of the algorithm is given below, where := denotes
variable assignment, the variables A and B denote the two classes to be sepa-
rated, R the set of support vectors selected as representatives, and Cl the final
clustering. The algorithm is called FJC (Find and Join Clusters).

FJC CLUSTERING ALGORITHM
Input. X (the data set of size n).
Output. Cl (A clustering of X).
1. Initialization.

A := X,
B := {n randomly generated uniform points

in the hyper-rectangle containing X},
R := {},
C := C_0,
sigma := sigma_0 (in our experiments C=2, sigma=0.1).

2. Find representatives of clusters portions.
Repeat the following two steps for n_iter

(in our implementation n_iter=4).
2.a Apply SVM(C_0,sigma_0) to separate A and B,

Cl_A := {non-bounded support vectors of A},
If (Cl_A contains more elements than R)

then R := Cl_A.
2.b SV_A := {the support vectors of class A},

A := A minus SV_A,
B := SV_A,

3. Build clusters portions.
Let R = {r_1,...,r_k} (obtained from Step 2).
Cl := {Cl_1,...,Cl_k} with
Cl_i = {x in X closer to r_i than to any other r_j}.
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4. Join clusters portions.
Repeat the following statement until Cl does not change.

for each Cl_i in Cl:
c_i := mean vector of Cl_i,
Find Cl_j containing a point closest to c_i,
Cl_union := (Cl-{Cl_i,Cl_j}) union {Cl_i,Cl_j},
If (score(CL_union) < score(Cl))

then Cl := Cl_union.

In Step 1, different sets B of uniform points can be generated depending on
the random seed used, which may yield to different clusterings. Thus FJC is
executed a number of times and a preferred clustering is selected using score.

Two heuristic criteria are used in FJC: the way in which R is chosen in Step
2 and the strategy used for joining clusters portions in Step 4.

In Step 2 the biggest of the ClA’s generated in the iterative process is
selected as set of representatives of (portions of) clusters. This is a rather
conservative criterion based on the intuition that a higher number of non-
bounded support vectors may indicate a better separation of the classes. At
each iteration the number of elements of class A decreases, so it would seem
more intuitive to use the ratio (cardinality of ClA)/(cardinality of A). However,
experiments on artificial data sets indicate that by using this latter criterion
(representatives of) smaller clusters may be lost.

In Step 4 the algorithm tries to join portions of clusters. We use a simple
heuristic where pairs of clusters are joined if the score of the resulting clustering
decreases. Pairs of clusters are selected as follows: one cluster is chosen (in
textual order) from the actual clustering, its mean vector is computed, and
then the cluster closest to the mean vector is chosen. This heuristic has the
advantage of being fast and yielding satisfactory results.

The algorithm is implemented in Matlab and uses the Matlab implementa-
tion by Gavin C. Cawley2 of Platt SMO algorithm.

3 Experiments

We consider five data sets from biological experiments. The first two data
sets, available at the UCI ML repository, are often used as benchmarks for
classification algorithms: the Fisher iris data set with 150 points, 4 attributes,
3 classes, 50 points per class; the Wisconsin breast cancer wdbc with 569 points,
30 attributes, 2 classes, 357 benign and 212 malignant. The colon data set [1]
consists of microarray measurements of 2000 genes over 44 colon cancer and
22 non cancer tissues. Here we cluster tissues, so we have 62 points, and select
the 200 genes having highest variance over the tissues. The leukemia data
set [4] consists of microarray measurements of 12582 genes over 72 tissues of
three Leukemia types, ALL (24), MLL (20), and AML (37). We select the 50
genes having highest variance over the tissues. Finally the cgh data set consists

2available at http://www.sys.uea.ac.uk/ gcc/svm/toolbox/
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data set data classes clusters nbsv error Jaccard robustness
cgh 55 2 4 28 1 0.95 0.69
colon 62 2 2 54 12 0.54 0.61
wdbc 569 2 7 7 22 0.35 0.74
leukemia 72 3 3 36 3 0.91 0.77
iris 150 3 3 11 11 0.78 0.75

Table 1: Results of FJC on five data sets.

of array Comparative Genomic Hybridization measurements of 1354 clones of
the genome over 43 stomach cancer and 13 ovarian cancer tissues. This data
set was provided by our colleagues at the Vrije Universiteit Medical Center of
Amsterdam. We select the 150 clones having highest variance over the tissues.

We run FJC on each data set 10 times and selected the best clustering
according to score. The results of the experiments are given in Table 1, where
the columns contain: the data set name, the number of data, the number
of classes (the ‘true’ clusters), followed by the results of FJC, that is, the
number of clusters, the number of non-bounded support vectors, the number
of points misclassified, the Jaccard score and the robustness. The Jaccard score
is p11/(p11 + p10 + p01) where p11 is the number of pairs of points belonging to
the same cluster in both the ‘true’ and FJC clustering, p10 (respectively p01)
is the number of pairs that belong to the same cluster in the FJC (respectively
‘true’) clustering but not in the ‘true’ (respectively FJC) one.

The robustness gives an indication of FJC consistence in assigning pairs of
points to the same or different clusters over the runs. For each pair of points
xi, xj we compute the fraction nsij of times they occur in the same cluster
over the 10 runs, and then aij = 1 − 2minimum(nsij , 1 − nsij). For a pair of
points, aij provides a measure of the confidence of the majority vote decision
of assigning xi and xj to the same or different clusters. The confidence is 1
when xi, xj are either always or never in the same cluster. The robustness is
the average confidence over all pairs of points.

The results indicate that FJC is a fairly robust clustering method, capable
of identifying ‘true’ structure in all the five data sets. The misclassification
errors of FJC are comparable to those found by state-of-the-art classification
methods. In particular, on the cgh and leukemia data sets FJC is able to
identify the classes almost perfectly.

In order to show the benefit of using the support vector classifier in FJC, we
consider the algorithm obtained from FJC by removing the SVM part. This
amounts to start FJC from Step 4 with Cl consisting of one data point per
cluster. The resulting algorithm yields the following results: 3 clusters, error 4
for cgh; 2 clusters, error 15 for colon; 15 clusters, error 25 for wdbc; 2 clusters,
error 26 for leukemia; and 4 clusters, error 26 for iris.
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4 Conclusion

This paper showed that non-parametric clustering can be performed by using
support vector classifiers and model selection. We conclude with some issues
we intend to address in future work. An alternative way to initialize the class
B of points in Step 1 of FJC is to find the sphere with minimum volume in
the feature space enclosing the data [9], and consider the resulting support
vectors as class B and the rest of the data as class A. We intend to adapt the
model selection criterion used for joining clusters. We shall investigate different
methods for input dimension reduction, in order to make FJC work with high
dimensional data sets.
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