
Improving iterative repair strategies for
scheduling with the SVM

Kai Gersmann, Barbara Hammer

University of Osnabrück, Department of Mathematics/
Computer Science, Albrechtstraße 28, 49069 Osnabrück, Germany,

e-mail: {kai,hammer}@informatik.uni-osnabrueck.de

Abstract. Resource constraint project scheduling (RCPSP) is an NP-
hard benchmark problem in scheduling which takes into account the limi-
tation of resources’ availabilities in real life production processes. We here
present an application of machine learning to adapt simple greedy strate-
gies. The rout-algorithm of reinforcement learning is combined with the
support vector machine (SVM) for value function approximation. The
specific properties of the SVM allow to reduce the size of the training set
and show improved results even after a short period of training.

1. Introduction
Real life scheduling instances usually possess a large amount of problem de-
pendent structure which is not tackled by formal descriptions of the respective
problem and hence not taken into account by general problem solvers. Ma-
chine learning offers a natural way to adapt initial strategies to the specific
setting and often allows to achieve better results. Starting with [11] where
reinforcement learning has been used to improve scheduling of NASA space
shuttle payload processing, various approaches combine mostly TD(λ) or Q-
learning and feedforward networks to adapt simple scheduling strategies to the
typical demands in real life scenarios, see e.g. [2, 8, 9]. The RCPSP constitutes
a well-studied NP-hard scheduling problem with various benchmark instances
and automatic problem generator [6]. It captures a general production scenario
where jobs with precedence constraints are to be processed requiring several
limited resources. Heuristic solutions of RCPSP are often based on local search
algorithms or integer linear programming [1, 7]. Due to the large number of
parameters of the problem, it shows considerable structure even for artificial
instances and it is therefore interesting to investigate the possibility to apply
machine learning tools for these type problems in general.

We here consider the capability of reinforcement learning to improve a sim-
ple greedy strategy for general RCPSP instances. We formulate the problem
as iterative repair problem with a number of repairs limited by the size of the
respective instance. Since this problem can be interpreted as acyclic search
problem, we are capable of using the particularly efficient rout algorithm of
reinforcement learning [3] and SVM [5] for approximating the value function,
achieving a very sparse representation of the respective training set and good
generalization ability. We demonstrate the ability of the approach to improve
the initial greedy strategy even after few training steps, and we investigate the
generalization capability of learned strategies to new RCPSP instances.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 235-240

2. Resource constraint project scheduling

We will consider the following variant of the RCPSP: m jobs and an acyclic
graph of precedence constraints are given with edge i → j indicating that job i
is to be finished before job j can be started. Each job j is assigned a duration
dj it takes to process the job and the amount mji of resource i = 1, . . . , n the
job requires. The resources are limited, i.e. at most ci units of resource i are
available at each time step. A schedule consists in an allocation of the jobs
to certain time slots and can be characterized by the time points tj at which
the jobs j start, since we do not allow interruption of the jobs. A feasible
schedule does neither violate precedence constraints, i.e. ti + di ≤ tj for all
i → j, nor resource restrictions, i.e.

∑
j:t∈[tj ,tj+dj)

mji ≤ ci for all time points t

and resources i. The makespan of a schedule is the earliest time point when all
jobs are completed, i.e. the value maxj{tj + dj}. The goal is to find a feasible
schedule with minimum makespan, in general a NP-hard problem [6].

A lower bound for the minimum achievable makespan is given by the pos-
sibly infeasible schedule which schedules each job as early as possible tak-
ing the precedence constraints into account but possibly violating resource
restrictions. This initial schedule, s0, can obviously be computed in polyno-
mial time. In [11] an objective called the resource dilation factor (RDF) is
defined which is related to the makespan and takes resource violations into
account for infeasible schedules: given a schedule s, RDF(s) is defined as
TRUI(s)/TRUI(s0) where the total resource utilization index TRUI(s) is de-
fined as

∑
t,i max{1,

∑
j:t∈[tj ,tj+dj)

mji/ci} where t enumerates the time steps
in the schedule and i the resources. Note that the summands indicate the
amount of overallocation of resource i at time t, hence TRUI(s) gives n times
the makespan for feasible schedules. We can therefore alternatively minimize
TRUI or the scaled version RDF instead of the makespan.

Starting from s0, a feasible schedule can be obtained by repair steps. We
consider only the following repairs: for the earliest time point violating a re-
source constraint, one job i is chosen and the job and its successors in the
precedence graph reschedules. ti is either increased by one or set to the earliest
time point not violating resource constraints. All successors of i are scheduled
at the earliest possible time for which the precedence constraints are fulfilled
disregarding resource constraints. si � sj denotes the fact that sj can be ob-
tained from si by one repair step. Note that the precedence constraints are
fulfilled in all schedules obtained in this way starting from s0. A feasible sched-
ule is achieved after a number of time steps bounded in the size of the instance
as soon as all resource constrained are fulfilled. Moreover, an optimum fea-
sible schedule can be obtained in principle on a path starting from s0 if the
repair steps are chosen appropriately. Of course, there cannot exist a simple
and general strategy of how to choose each repair step optimum, the RCPSP
being an NP-hard problem. One simple greedy strategy which likely yields
good schedules is to choose always that repair step si � sj such that the local
RDF, i.e. the RDF of sj , is optimum among all schedules directly connected
to si. We refer to the first feasible schedule obtained in this way starting from
s0 as sgreedy. We will in the following investigate the possibility to improve this
greedy strategy based on local RDF by adaptation with reinforcement learning.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 235-240

3. Rout-algorithm and SVM

We have formulated the RCPSP as an iterative decision problem: starting
from s0, repair steps are iteratively applied until a feasible schedule is reached.
Note that this decision process is acyclic and those decisions are optimum which
finally lead to a feasible schedule with minimum RDF. A simple greedy strategy
substituting the final RDF on the search path by the local RDF after each
repair step and deciding based on this one step lookahead has been proposed.
Reinforcement learning offers a natural way to improve this strategy by problem
dependent strategies learned from data [9]. They try to optimize the overall
reward, i.e. minimize the final RDF or maximize its inverse. The rout algorithm
has been proposed as a particularly efficient algorithm for acyclic domains [3].

Denote by S the set of schedules. Rout aims at learning the value function
optRDF : S → R, s �→ max{1/RDF(s′) | s′ is feasible and connected to s by a
finite number of repair steps} for relevant regions of the search space. Choosing
repair steps s � s′ based on the one step lookahead given by optRDF (s′) yields
an optimum solution, an approximation of optRDF still likely achieves an im-
provement compared to the solution sgreedy. Obviously, optRDF (s) = 1/RDF(s)
for feasible schedules and for infeasible schedule s the Bellman equality holds:
optRDF (s) = max{optRDF (s′) | s � s′}. Using this equality, rout tries to
approximate the value function optRDF by a function fRDF starting from the
frontier states in the repair graph. Define fstep(s) := 1/RDF(s) if s is feasible
and max{fRDF(s′) | s � s′} otherwise. Rout consists in the following steps:

initialize fRDF and training set T ;
repeat: hunt frontier state(s0);

add the returned pattern to T and retrain fRDF;

where hunt frontier state(s)
{ repeat h times: for all s � s′:

generate a repair path p from s′ to a feasible schedule; (*)
if |fRDF(s′′) − fstep(s′′)| > ε for some s′′ ∈ p:

hunt frontier state(s′′) for the last such s′′ ∈ p; exit;
return(s, fstep(s)); }

Thereby, h = 20 and ε = 0.01. We choose repair steps on p in (∗) based
on a compromise between exploration and exploitation: choose the successor
s′′ with optimum RDF(s′′) with probability p, the successor with optimum
fRDF(s′′) with probability (1 − p)2, and randomly with probability p(1 − p). p
is linearly decreased from 1 to 0, hence starting with the search strategy based
on local RDF and switching to the learned strategy fRDF if enough exploration
has been done. fRDF is initialized randomly and initially trained on a set T
of 200 frontier states obtained via search according to local RDF and random
selection. Retraining of fRDF only takes place each time after a set of 20 new
training points has been added to T . Moreover, a SVM is used as approxima-
tor fRDF in our case, which is already uniquely determined by a subset of T ,
the support vectors. We can therefore reduce T to the support vectors after
training. We perform a consistency check when adding new training patterns
to T , deleting old patterns if they almost coincide with new ones.

As already mentioned, fRDF is given by a SVM trained on T . The SVM

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 235-240

constitutes a universal learning algorithm for functions between real vector
spaces with polynomial training complexity [4, 5, 10]. Since the SVM aims at
minimizing the structural risk directly, we can expect very good generalization
ability even for few training patterns. Moreover, the SVM is determined by
the support vectors which constitute a sparse subset of T , hence allowing us
to keep the size of T nearly constant. In order to use SVM, schedules are rep-
resented in a finite dimensional vector space adapting features as proposed in
[11] to our purpose: the mean and variance of free resource capacities, mean
and variance idle time slacks between consecutive jobs, the RDF, number of
overallocated resources compared to this number in s0, and various character-
istics describing the number of time windows of constant job allocation which
violate resource constraints. This representation allows to transfer the trained
value function fRDF to new instances even with a different number of jobs and
resources. We use a real-valued SVM for regression with ε-insensitive loss func-
tion and ANOVA-kernel as provided e.g. in the publicly available SVM-light
program by Joachims [5]. We could, of course, use alternative proposals of
SVM for regression such as least squares SVM [10]. The final (dual) optimiza-
tion problem for SVM with ε-insensitive loss, given pattern (xi, yi) ∈ R

n × R

reads as follows:
minimize

ε
∑

i(αi + α∗
i) −

∑
i yi(αi − α∗

i) + 0.5
∑

ij(αi − α∗
i)(αj − α∗

j)k(xi, xj)
such that

∑
i(αi − α∗

i) = 0, 0 ≤ αi, α
∗
i ≤ C for all i

where ε > 0 defines the approximation accuracy, C > 0 the tolerance with
respect to errors, and k(a, b) = (

∑
i exp(−γ(ai − bi)))d defines the ANOVA

kernel for input vectors with components ai resp. bi. fRDF can be derived from
the dual variables as fRDF(x) =

∑
i(αi − α∗

i)k(x, xi) + α0, where αi, α
∗
i �= 0

holds only for a sparse subset of training points xi, the support vectors, and
the bias α0 can be obtained from the equation fRDF(xi) = yi ± ε for support
vectors xi with αi, α

∗
i < C. We have chosen C as 0.05, ε as 0.01 γ as 0.1 and

d as 3.

4. Experiments
We randomly generated 10 instances with 20 jobs and 4 resources with the
generator [6]. To show the capability of our approach to improve simple repair
strategies even after short training we compare the solution provided by greedy
search based on RDF, sgreedy; the optimum solution found when initializing
the training set T with 200 pattern, sgreedy noise; the solution obtained with
one-step lookahead based on the SVM trained on the initial set T , srout short;
and the solution based on the SVM trained on 1000 training pattern, srout.
The inverse of the achieved RDF, multiplied by the number of resources, 4,
is depicted in Fig. 1 and clearly indicates that even after short training time,
improved schedules can be found with the learned strategy. srout often already
constitutes a near-optimum schedule for the tested instances and provides in
all cases an improved schedule. For all but 2 cases already the initially trained
SVM shows better solutions than the optimum solution found when generating
the initial training set, i.e. the generalization ability of the SVM allows to go

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 235-240

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9

"greedy"
"greedy_noise"

"rout_short"
"rout"

Figure 1: Improvement obtained by reinforcement learning compared to a sim-
ple (iterated) greedy strategy on 10 different RCPSP instances.

beyond information provided in the initial training set. In absolute numbers,
the makespan for the leftmost schedule decreases from 48 time steps in sgreedy

to 43 time steps in sgreedy noise, 40 time steps in srout short, and 37 time steps in
srout. Note that no backtracking has been done for strategies based on fRDF.

To investigate the generalization capability of the learned strategies, we
randomly disrupt the leftmost instance as follows: a precedence constraint is
added or removed, a resource demand is increased or decreased by about 20%
of the total range, a job duration is changed by about 30%, a resource avail-
ability by about 10%. Thus we obtain 30 similar instances, for which sgreedy

and sgreedy noise are depicted in Fig. 2. In addition, the value function trained
for the original instance on the initial set T and 1000 pattern, respectively, has
been used for one-step lookahead for the disrupted instances, yielding sched-
ules srout short and srout. The benefit of this strategy is depicted in Fig. 2, the
leftmost row presenting the values for the original instance used for training.
22 out of 30 instances are improved by the only shortly for the original instance
trained version, and 21 out of 30 instances achieve a final schedule which qual-
ity is comparable to the final schedule obtained in the original problem. In
only one case, fRDF leads to a final schedule which does not significantly im-
prove the initial schedule sgreedy. Note that the original instance is disrupted
in this experiment such that the optimum schedules for the resulting instances
are different from the original schedule, as can already be seen by the large
variance of the quality of sgreedy. Hence this experiment clearly points out the
generalization capability of learned strategies to new, though similar instances.

5. Conclusion

We have demonstrated the possibility to improve iterative repair strategies for
the RCPSP by means of machine learning. We thereby restricted to acyclic
repair steps with the benefit of priorly limited runtime and the possibility to use
the efficient rout reinforcement learning algorithm together with the SVM for
value function approximation. The approach could improve the initial greedy

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 235-240

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30

"greedy"
"greedy_noise"

"rout_short"
"rout"

Figure 2: Improvement achieved by the strategy trained on the leftmost in-
stance for 30 similar instances; fRDF generalizes to more than 2/3 of the cases.

algorithm for artificially generated instances and the learned strategies transfer
to new instances as demonstrated by experiments. Note that good schedules
could be found within this method although no backtracking has been done
based on the approximated value function. It can be expected that the results
could be further improved if one-step lookahead based on the learned function
fRDF is combined with stochastic backtracking methods such that the approach
becomes competitive even for large-scale scheduling problems.

References
[1] T.Baar, P.Brucker, and S.Knust, Tabu-search algorithms and lower bounds for the

resource-constraint project scheduling problem, Meta-heuristics: Advances and Trends
in Local Search Paradigms for Optimization, 1-18, Kluwer, 1998.

[2] A.G.Barto and R.H.Crites, Improving elevator performance using reinforcement learn-
ing. NIPS 8, 1017-1023, MIT Press, 1996.

[3] J.A.Boyan and A.W.Moore, Learning evaluation functions for large acyclic domains,
Proc.ICML, 14-25, 1996.

[4] B.Hammer and K.Gersmann, A note on the universal approximation capability of SVMs,
to appear in Neural Processing Letters.

[5] T.Joachims, Learning to Classify Text Using Support Vector Machines, Kluwer, 2002.

[6] R.Kolisch and A.Sprecher, PSBLIB – a project scheduling library, European Journal of
Operational Research 96, 205-219, 1996.

[7] A.Mingozzi, V.Maniezzo, S.Ricciardelli, L.Bianco, An exact algorithm for project
scheduling with resource constraints based on a new mathematical formulation, Man-
agement Science 44, 714-729, 1998.

[8] S.Riedmiller and M.Riedmiller, A neural reinforcement learning approach to learn local
dispatching policies in production scheduling, Proc.IJCAI, 1074-1079, 1999.

[9] R.Sutton and A.Barto, Reinforcement Learning: An Introduction, MIT Press, 1998.

[10] J.A.K.Suykens, T.Van Gestel, J.De Brabanter, B.De Moor, and J.Vandewalle, Least
Squares Support Vector Machines, World Scientific Pub. Co., 2002.

[11] W.Zhang and T.G.Dietterich, A reinforcement learning approach to job-shop scheduling,
Proc.IJCAI, 1114-1120, 1995.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 235-240

