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Abstract. In this article, we discuss an optimal decision making problem
in a dynamic environment on the bases of both machine learning and
brain learning. We present a model-based reinforcement learning (RL)
in which the model of environment is directly estimated. Our RL makes
the action selection depending on the detection of environmental changes
and the current value function. We suggest a possible functional model
of our RL with a focus on the prefrontal cortex and the anterior cingulate
cortex. In order to examine our model, an imaging study is conducted.

1 Introduction

Although natural environments surrounding humans change with time, humans
learn the features of the current environment and determine their optimal be-
haviors. In this article, we discuss a reward-based decision making method on
the bases of both machine learning and brain learning. In the machine learning
field, an optimal decision making problem is termed Markov decision process
(MDP). If an MDP involves the direct identification of an unknown environ-
ment, it is solved by a model-based reinforcement learning (RL) method.

In RL, the objective of an agent is to maximize the rewards accumulated
toward the future, and it is achieved by improving its action selection. A
standard RL scheme then estimates the expected reward accumulation, that is
the value function. Model-based RL [10], however, tries to identify the current
environment directly and the value function is approximated using the model.
In our previous paper [3], we presented a model-based RL method in which the
environmental model is estimated based on a Bayes inference.

In this article, we propose a possible functional model in the brain, which re-
alizes our model-based RL method. We assume that the estimation of reward-
based environmental models is involved in functions of the dorsolateral pre-
frontal cortex (DLPF) and the anterior prefrontal cortex (APF). Our RL
method also needs the action selection depending on that estimation. We
consider this operation is done within the anterior cingulate cortex (ACC).

In order to examine our functional model, a human imaging study using
functional magnetic resonance imaging (fMRI) is conducted in this study.
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2 Model-based RL method

In a Markov environment, where P(s'|s,a) gives the probability of reaching
state s’ by selecting action a at state s, the value function for state s, V (s),
should satisfy the following optimal Bellman’s equation:

Vis) = m(:laxQ(s,a) (1a)
Q(s,a) = r(s,a)+’sz(s'|s,a)V(s'), (1b)

where r(s,a) denotes an immediate reward and 0 < 7y < 1 is a discount con-
stant. The action-value function @(s,a) represents the expected reward ac-
cumulation when the agent takes action a at state s and the optimal actions
at the subsequent states. The objective of an RL, often termed MDP, is to
obtain an optimal policy, which outputs the action maximizing (s, a) for any
state s. In many RL problems, the state-transition probability P(s'|s,a) is
unknown. The model-based RL [10] tries to model directly the environment
by approximating the state-transition probability based on past experiences.

2.1 Partially-observable MDP
A partially-observable MDP (POMDP) [4] deals with a Markov environment

with unobservable state variables. Let s = (y, z) be an environmental state,
where y and z denote observable and unobservable state variables, respectively.
One way to deal with a POMDP is called a belief state MDP, in which the
Bellman’s equation is modified from that in MDP, (1), by replacing a state s
with a belief state b. A belief state is typically a probability distribution of the
observable and unobservable variables. Since there is no probabilistic factor for
the observable variables, b = [y, P(2)], where P(z) is estimated from the past
observations. We assume that an agent is able to estimate a new belief state
Y = [y, P'(z)], using the new observation y'. Even in a finite world, where both
state and action spaces are discrete and finite, the belief state MDP is hard to
solve, because the value function is often intractable. Therefore, we need an
approximation. If an RL agent is certain of the estimation of the unobservable
variables, P(z) is equivalent to Z, i.e., the most probable value of z. If we
further assume for simplicity that the reward function does not depend on the
unobservable variables, the Bellman’s equation is approximated as

V(ly.2l) = maxQ([y, 2], q) (2a)

Qy,2a) = r(y,a) +vY_ Py, P a)V([y', 2D (2b)

Since this approximation may not be valid when the RL agent is uncertain of
the unobservable variables, our previous model [3] introduced an exploration
bonus that encourages exploratory behaviors in an uncertain situation.

In our RL method, there are unobservable variables reflecting the stochas-
tic nature of the environment, and distribution }5(2) is estimated by a Bayes
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inference with “forgetting” effect on past experiences and a non-informative
prior. Detailed formulations were described in our previous paper [3].

2.2 Action selection

We define a stochastic policy 7 by a conditional probability P™(als) 1. Espe-
cially in a finite world, a greedy policy, which maximizes [ Q(s,a)P™(a|s)da,
will assign probability zero to possible actions except one or several. Then, it
becomes difficult for the agent to adapt to the environmental change. In order
to preserve the adaptability, free energy is introduced:

F(P) = / Q(s,a)P™ (a]s)da — % / P™(als)log P™(a]s)da.  (3)

The maximization of the first and second terms corresponds to exploitation for
obtaining a large reward based on the current value function and exploration
for searching for a better policy, respectively. Coefficient (3 is called inverse-
temperature; it controls the exploitation-exploration balance.

Using the variational method, the maximization of F(P™) is achieved by

o exp(BQ(s,a))
Prals) = 1o (8Q(s,a))da’

which is called the soft-max policy. When the inverse-temperature is small, the
soft-max policy randomly selects one of the possible actions. With a large value,
it selects a greedy action that maximizes the current action-value function.

We proposed a two-folded control method of the inverse-temperature [3],
one based on the variation of the action-value function and the other based on
the detection of the environmental change. Although the details are omitted,
important is that the action selection is modified such as to depend on the
estimation of the environment.

(4)

2.3 Working hypothesis

Here, we present a possible brain implementation of our RL method.

DLPF has been mainly studied in terms of a working memory function for
goal-directed behaviors. Rao et al. [7] reported sustained activities of DLPF
neurons depending on state and/or action. In addition, recent recording studies
have revealed that DLPF neurons predict the quality and the quantity of the
future reward. Thus, we assume that DLPF represents the estimation of accu-
mulated reward, which depends on state and/or action, i.e., the value function
and/or the action-value function in RL.

In the model-based RL, the value function is approximated using the envi-
ronmental model. According to a recent view, DLPF constructs cascade net-
works representing transitions of states [11]. A recent study [6] suggested that
DLPF is involved in the preparation of forthcoming sequence of actions based
on information stored in working memory. The behavioral planning requires

'n the following descriptions, [y, 2] is represented as s.
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Figure 1: A sequence learning task with visual stimuli and response buttons.

predicting the environmental changes induced by own action. We speculate
that the environmental models in RL are expressed in DLPF.

The environmental model of our RL method requires the estimation of
unobservable variables. Recent human imaging studies [5, 9] suggested that
APF is involved in active switching of behavioral rules without explicit cues.
Since such switching is induced by the estimation of environmental change, we
consider that APF is possibly related to the estimation of unobservable states.

In our RL, the action selection is based on both the current value function
and the detection of environmental change. A recent imaging study [1] observed
ACC activations when a subject voluntarily switched his behavioral rule. ACC
is also activated by the detection of behavioral error and/or response conflict.
We consider that ACC is related to the uncertainty of the action selection,
depending on the current environmental model maintained in DLPF.

According to our hypothesis, DLPF maintains and manipulates the environ-
mental model and the reward-based environmental model, i.e., P(y/|[y, P(2)], a)
and Q([y,2],a) in (2). APF estimates the unobservable state variables, 2.
These estimations are carried to ACC that executes the action selection (4).

3 fMRI experiment
3.1 Material and methods

Behavioral task Sixteen subjects (13 males and 3 females) performed se-
quential learning tasks and they were paid in proportion to their task scores.
At an initial state, a fixation cross was displayed in the screen center sur-
rounded by four gray squares. A subject was required to press left or right
button within 2000 ms. Immediately after the response, the next state was
represented (Fig.1(a)). When the subject pressed a correct button, the color of
one square changed, while a wrong button resulted in no change. A state was
represented by a color pattern of squares, and the color of the squares changed
from gray to red in the first round and from red to gray in the second round
(Fig.1(b)). Thus, to reach the goal, a subject had to learn an eight-response
sequence by feedbacks indicating whether each response was correct or not.
An experiment consisted of two behavioral conditions. In a memory (MEM)
condition, since the state transition was deterministic for each state, a subject
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Region BA MNI t-value

Prefrontal Cortex
Middle Frontal Gyrus 46/9 48 30 22 6.15
Middle Frontal Gyrus 8 32 18 48 7.1
Parietal Cortex
Inferior Parietal Cortex 40 38 -50 40 885
Anterior Cingulate
Cingulate Gyrus 32 6 22 38 738
Cingulate Gyrus 32 4 18 46 596

Figure 2: MDP-MEM comparison based on a group random effect analysis.

needed to memorize a fixed sequence of eight correct responses. In an MDP con-
dition, on the other hand, the state transition was first-order Markov, in which
a correct response resulted in state transition with 85% or stay at the same
state with 15%; these probabilities did not change with time. Thus, especially
in the early leaning stage, a subject was required to estimate and maintain
the multiple state transitions, i.e., the environmental models P(s’|s,a), and to
learn the optimal control P(a|s) using the estimation.

A subject performed two runs, each of which included three MDP sessions
of 20 responses and one MEM session. The correct response sequence was
the same among three MDP sessions. Before and after a single session, the
condition and the number of achieved goals were displayed, respectively.

Procedures Using a 1.5-tesla scanner, functional images were obtained with
a T2*-weighted EPIs, with blood oxygenation level-dependent (BOLD) con-
trast (TE, 55 ms; FA, 90°). The volumes were acquired every 3.0 sec (TR),
and contained 28 slices of 5mm thickness.

The data were analyzed with SPM99 software. All EPIs were realigned
to first image, registered to anatomical image, and then normalized to MNI
reference brain. The normalized EPIs were spatially smoothed with a Gaussian
kernel of 8 mm (FWHM). BOLD activations were statistically compared with
respect to group random effects with significance p < 0.005.

3.2 Results and Discussion

The mean response time (RT) was 3773 ms in the MEM session, and 4082 ms,
3774 ms and 3497 ms in the three MDP sessions; it significantly decreased as
the MDP sessions proceeded (p < 0.05). In the MDP sessions, we measured the
moving average of both behavioral variation by means of entropy, and behav-
ioral correctness by means of overlap with the correct response sequence. The
behavioral variation decreased with time through learning (data not shown).
The comparison of MDP trials to MEM trials revealed significant increase
in activations in four regions (Fig.2). Although correct automata in both con-
ditions have eight lengths, subjects in the MDP condition were required to
preserve some possible sequences due to the stochastic nature of the task. We
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consider that the PFC activation is related to the manipulation and mainte-
nance of the automata representing possible environmental models. Actually,
when subjects repeated the learned sequence automatically in the MEM condi-
tions, that part was not activated. Activations of both posterior DLPF (BAS)
and a cortex in the intraparietal sulcus (IPS) were also found. These areas have
been known to reflect the maintenance of working memories without further
executive processing [8]. It was suggested that IPS is important for visuospa-
tial attention [2], and this interpretation is possible in our study’s case, because
error-induced visual attention will occur in the MDP condition.

We also found significant activation increase in ACC during the MDP condi-
tion, and the activation significantly decreased as the MDP sessions proceeded.
The decrease of behavioral variation through learning is related to the decrease
in the activity of ACC. This interpretation is consistent with our hypothesis,
in which ACC represents the uncertainty of action selection.

4 Concluding Remarks

In this study, we presented a model-based RL method in which the environment
is directly estimated. In order to adapt to changes in the environment, a control
method of action selection was introduced.

We proposed a possible functional model of our RL method, in which DLPF
maintains and manipulates the environmental models and ACC is related to
action selection, and conducted an fMRI experiment. Although we also sug-
gested that the estimation of unobservable states in RL is expressed in APF,
its possibility has not yet been examined. This is an issue in our future study.
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