ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 93-98

Magnification Control in Winner
Relaxing Neural Gas

Jens Christian Claussen' and Thomas Villmann?

I Christian- Albrechts-Universitét zu Kiel, Institut fiir Theoretische
Physik und Astrophysik, D—24098 Kiel, Leibniztr.15, Germany™
2Universitét Leipzig, Klinik fiir Psychotherapie
D-04107 Leipzig, Karl-Tauchnitz—Str.25, Germany™*

Abstract. We transfer the idea of winner relaxing learning from the
self-organizing map to the neural gas to enable magnification control
independently of the shape of the data distribution.

1. Introduction

Neural maps are a widely ranged type of neural vector quantizers which are
commonly used e.g. in data visualization, feature extraction, principle com-
ponent analysis, image processing, and classification tasks. A well studied
approach is the Neural Gas Network (NG) [8]. An important advantage of the
NG is the adaptation dynamics, which minimizes a potential, in contrast to the
self-organizing map (SOM) [7] frequently used in vector quantization problems.

In the present paper we consider a new control scheme for the magnification
of the map. Controlling the magnification factor is relevant for many applica-
tions in control theory or robotics, were (neural) vector quantizers are often
used to determine the actual state of the system in a first step, which is an
objective of the control task [9, 10].

The NG maps data vectors v from a (possibly high-dimensional) data
manifold D CR? onto a set A of neurons i. This is formally written as
Up_,4 : D — A. Each neuron i is associated with a pointer w; €R?¢ all of
which establish the set W = {w;},. ,. The mapping description is a winner
take all rule, i.e. a stimulus vector v € D is mapped onto the neuron s € A the
pointer w, of which is closest to the actually presented stimulus vector v,

Up_4:vios(v)=argmin|v—w;. (1)
€A

The neuron s is called winner neuron.

During the adaptation process a sequence of data points v € D is presented
to the map with respect to the stimuli distribution P (D). Each time the
currently most proximate neuron s according to (1) is determined, and the
pointer w, as well as all pointers w; of neurons in the neighborhood of s are
shifted towards v, according to

Aw; = €hy (1,v, W) (v — w;). (2)
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The property of “being in the neighborhood of s” is represented by a neigh-
borhood function hy (i,v, W). The neighborhood function is defined as

B, 3)

hx (i,v,W) = exp (—
where k; (v, W) yields the number of pointers w; for which the relation
|lv —w;|| < |lv—w;| is valid [8]. In particular we have hy (s,v,W) = 1.0.
We remark that in contrast to the SOM the neighborhood function is evalu-
ated in the input space. Moreover, the adaptation rule for the weight vectors
in average follows a potential dynamics [8].
The magnification of the trained map reflects the relation between the data
density P (D) and the density p of the weight vectors. For the NG the relation

P (D) o< p(w)™ (4)

with ang = d/(d + 2) has been derived [8]. The exponent ayg is called magnifi-
cation factor and depends on the intrinsic dimensionality of the data. However,
the information transfer, in general, is not independent of the magnification of
the map [11]. It is known that for a vector quantizer (or a neural map in
our context) with optimal information transfer the relation o = 1 holds. On
the other hand, a vector quantizer which minimizes the mean distortion error
E, = [, ||ws —v||” P(v)dv need a magnification factor of v = d/(d 4 ) with
v €D C R [11]. Hence, the NG minimizes the usual Es distortion error.

We now address the question how to extend the Neural Gas to achieve an
a priori chosen optimization goal, i.e. an a priori chosen magnification factor.

2. Controlling the magnification

For the NG a solution of the magnification control problem can be realized by
introducing an adaptive local learning step size €,(y) [10] according to a similar
approach introduced for SOM [1]. The new (localized) learning rule reads as

Aw; = €g(vyha (i, v, W) (v — w;) (5)

with the local learning parameters ¢; = € (w;) depending on the stimulus den-
sity P at the position of the weight vectors w; via (¢;) = eoP (w;)™. The
brackets (...) denote the average in time, and s (v) is the best-matching neu-
ron with respect to (1). This approach finally leads to the new magnification
law

o =ayg-(m+1) (6)

In real applications one has to estimate the generally unknown data distribu-
tion P. This may lead to numerical instabilities of the control mechanism [5].
Recently, an new approach for magnification control of the SOM was intro-
duced [3] which is a generalization of a winner relaxing modification [6]. This
approach provides a control scheme which is independent of the shape of the
data distribution [3]. We transfer these ideas to the NG as follows:
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Analog to the generalized winner relaxing SOM [3], we introduce the winner
relaxing NG by defining the learning rule as

Aw; = ehy (i, v, W) (v —w;) + R(&, k) (7)

with the winner relaxing term

R(& k) = (E+K) (V—W;)6is — Kbis Z ha(v, W) (v—w;)  (8)

J

depending on weighting parameters £ and . The original motivation in [6] was
to derive a learning rule from an average reconstuction error including the effect
of shifting voronoi borders, which results in an additional term for the winner,
i.e. (7) with & =0,k = % However, one can utilize the winner relaxing term
to influence the magnification by global choice of x as in [3].

We now derive a relation between the densities p and P in analogy to [8]
for the winner relaxing learning (7). The procedure is very similar as in [8, 10].

We can write the average change (Aw;) for the winner relaxing NG (7) as

<AW1> = Lh+L+1;5 (9)

with L = /P (V) hy (i,v, W) (v — w;) dv, (10)
I, = /P (V) (E+K) 05+ (Vv—w;)dv (11)

and I; = —/P(V) 51-S/<;Zh)\ (4, v, W) (v—w,)dv  (12)

J

The integral I; is the usual one according to the NG dynamics, yielding [8]

d+2 O.p
L = €loP-P —=. 1
' ‘ (a d p ) (13)
with ¢ = %/ ha (x) - [x]* dx. (14)
(Ta-p) © /P

We further assume a continuum approach such that for an input v we have
ws = v [9]. Then I vanishes in the continuum limes because the integration
over d;5 only contributes for w;, but in this case (v — wg) = 0 holds. While I,
may contribute in higher orders, no influence on the entropy was found for the
choice k 4+ £ = 0 instead of £ = 0. We now pay attention to the I3-integral:
The continuum assumption made above allows a turn over from sum
>0 ha (Wi, v, W) (v — w;) to the integral [ hy (w,v, W) (v —w)dw in (12).
A procedure completely analog to the derivation of the NG magnification gives

b= [ P@)dux [ [ 1360 1) -3 () ax | av (15)

=

with the new integration variable x (r) = #-k; (r)? and the d x d-Jacobian—

matrix J (x) = det(dry/0x;) with r = v — w;.
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I3 only contributes to (Aw;) for the winning weight (realized by J;s), i.e.,
for w; = w, which is equal to v according to the continuum approach. Hence,
the integration over v yields

Is = kP (w;) - /h)\ (x)-r(x)-J(x)dx (16)

If hy (k; (r)) rapidly decreases to zero with increasing r, we can replace the
quantities r (x), J (x) by the first terms of their respective Taylor expansions
around the point x = 0 neglecting higher derivatives. We obtain

x() =r(rap(w)! (14 5220 o () (")
which corresponds to
X - Opp (W)
d-p(ws)

with 74 = 72 /T (£ +1) as the volume of a d-dimensional unit sphere [8)].
Further,

=

(%) = x (rap (W)™ (1—<mp<w,»>>—%- +0(x2)) (18)

_ aJ
I = (JO+mft+.)
(19)
1 _1 Or
= (1a-p) (1*(Td’l3) T(1+3)-x- p”) + O (2?)
and, hence, % 0 = (Ta- p)f(H%) %. Therefore, the integral in equation
(16) can be rewritten as
Is = e'ﬁP(Td-p)_é hy(x) - x
D
(rap) = (U4 3) (rae ) ) o By ) (20)
1—(rg-p) 7 -x- ‘Z?/’:nL...) dx

The integral terms in (20) of odd order in x vanish because of the rotational
symmetry of hy (x). Then (16) yields, neglecting terms in higher order in x,

2
I3 = G,deiarp (21)
d p
Taking together (13) and (21), the stationary solution of (7) is given by
d+2 Op d+20pp
Aw;))=0=0,P—-P - —— Pr——— 22
(Aw;) =0=20 4 P + Pk i, (22)

This differential equation has the same form as the one for the usual Neural
Gas (13). The magnification exponent of the Winner Relaxing Neural Gas is
now given by

1 a 1
1-rkd+2 1-—k

QWRNG = QNG- (23)
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Now two direct observations can be made: Firstly, the magnification exponent,
same as in [3], appears to be independent of the additional diagonal term (con-
trolled by &) for the winner. Therefore £ = 0 again is the usual setting. Further,
by adjusting x appropriately, the magnification exponent can be adjusted, e.g.
to the most interesting case of maximal mutual information (where & = 1)

2
d+2
If the same stability borders |k| = 1 of the Generalized Winner-Relaxing SOM
also apply here, one can expect to increase the NG exponent by positive values
of k, or to lower the NG exponent by a factor 1/2 for k = —1. In contrast to the
Winner Enhancing SOM, where the relaxing term has to be inverted (k < 0)
to increase the magnification exponent, for the neural gas positive values of k
are required to increase the magnification exponent. While the exponent still
remains dependent on the dimension of the data, once this dimension is known
(for instance estimated according to [2] or [4]), the parameter x can be set a
priori to obtain a neural gas of maximal mutual information. In this approach
it is not necessary to keep track of the local reconstruction errors and firing
rate for each neuron to adjust a local learning rate.

However, one has to be cautious when transferring the A\ — 0 result obtained
above (which would require to increase the number of neurons as well) to a
realistic situation where a decrease of A with time will be limited to a final
finite value to avoid the stability problems found in [5]. If the neighborhood
length in SOM is kept small but fixed for the limit of fine discretization, the
neighborhood function of the second but one winner will again be of order 1
(as for the winner). For the NG however the neighborhood is defined by the
rank list. As the winner is not present in the Iy + I3 integral, all terms share
the factor e~ by hy (k) = e *hy(k — 1) which indicates that in the discretized
algorithm x has to be rescaled by e™ to agree with the continuum theory.

(24)

Ropt =

3. Numerical results

A numerical study shows that the winner-Relaxing sum can indeed be used
to increase the mutual information of a map generated by the Neural Gas
algorithm. Using a standard setup as in [5] of 50 Neurons and 107 training
steps with a probability density P(z;...zq) = [[, sin(mz;), with fixed A = 1.5
and € decaying from 0.5 to 0.05, the entropy of the resulting map computed
for an input dimension of 1, 2 and 3 is plotted in Fig. 1. The entropy shows
a dimension-dependent maximum approximately at x = diwe)‘. The scaling of
the position of the entropy maximum with input dimension is in agreement with
the continuum theory, as well as the prediction of the opposite sign of x that
has to be taken to increase mutual information. Our numerical investigation
indicates that the prefactor in fact has to be taken in account for finite A and
a finite number of neurons.

To conclude, within a broad range around the optimal x the entropy is close

to the maximum Zf\]:l P;log(P;) =log(N) given by information theory.
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Figure 1: Plot of the entropy H curves for varying values of k for one- (¢), two- (+),
and three-dimensional (0) data. The entropy has the maximum log(50) ~ 3.912 if
the magnification equals unity [11]. The arrows indicate the rescaled kopt-values for
the respective data dimensions.
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