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Abstract. We transfer the idea of winner relaxing learning from the
self-organizing map to the neural gas to enable magnification control
independently of the shape of the data distribution.

1. Introduction

Neural maps are a widely ranged type of neural vector quantizers which are
commonly used e.g. in data visualization, feature extraction, principle com-
ponent analysis, image processing, and classification tasks. A well studied
approach is the Neural Gas Network (NG) [8]. An important advantage of the
NG is the adaptation dynamics, which minimizes a potential, in contrast to the
self-organizing map (SOM) [7] frequently used in vector quantization problems.

In the present paper we consider a new control scheme for the magnification
of the map. Controlling the magnification factor is relevant for many applica-
tions in control theory or robotics, were (neural) vector quantizers are often
used to determine the actual state of the system in a first step, which is an
objective of the control task [9, 10].

The NG maps data vectors v from a (possibly high-dimensional) data
manifold D ⊆R

d onto a set A of neurons i. This is formally written as
ΨD→A : D → A. Each neuron i is associated with a pointer wi ∈R

d all of
which establish the set W = {wi}i∈A. The mapping description is a winner
take all rule, i.e. a stimulus vector v ∈ D is mapped onto the neuron s ∈ A the
pointer ws of which is closest to the actually presented stimulus vector v,

ΨD→A : v �→ s (v) = argmin
i∈A

‖v − wi‖ . (1)

The neuron s is called winner neuron.
During the adaptation process a sequence of data points v ∈ D is presented

to the map with respect to the stimuli distribution P (D). Each time the
currently most proximate neuron s according to (1) is determined, and the
pointer ws as well as all pointers wi of neurons in the neighborhood of s are
shifted towards v, according to

�wi = εhλ (i,v,W) (v − wi) . (2)
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The property of “being in the neighborhood of s” is represented by a neigh-
borhood function hλ (i,v,W). The neighborhood function is defined as

hλ (i,v,W) = exp
(
−ki (v,W)

λ

)
, (3)

where ki (v,W) yields the number of pointers wj for which the relation
‖v − wj‖ ≤ ‖v − wi‖ is valid [8]. In particular we have hλ (s,v,W) = 1.0.
We remark that in contrast to the SOM the neighborhood function is evalu-
ated in the input space. Moreover, the adaptation rule for the weight vectors
in average follows a potential dynamics [8].

The magnification of the trained map reflects the relation between the data
density P (D) and the density ρ of the weight vectors. For the NG the relation

P (D) ∝ ρ (w)αNG (4)

with αNG = d/(d + 2) has been derived [8]. The exponent αNG is called magnifi-
cation factor and depends on the intrinsic dimensionality of the data. However,
the information transfer, in general, is not independent of the magnification of
the map [11]. It is known that for a vector quantizer (or a neural map in
our context) with optimal information transfer the relation α = 1 holds. On
the other hand, a vector quantizer which minimizes the mean distortion error
Eγ =

∫
D ‖ws − v‖γ

P (v) dv need a magnification factor of α = d/(d + γ) with
v ∈D ⊆ R

d [11]. Hence, the NG minimizes the usual E2 distortion error.
We now address the question how to extend the Neural Gas to achieve an

a priori chosen optimization goal, i.e. an a priori chosen magnification factor.

2. Controlling the magnification

For the NG a solution of the magnification control problem can be realized by
introducing an adaptive local learning step size εs(v) [10] according to a similar
approach introduced for SOM [1]. The new (localized) learning rule reads as

�wi = εs(v)hλ (i,v,W) (v − wi) (5)

with the local learning parameters εi = ε (wi) depending on the stimulus den-
sity P at the position of the weight vectors wi via 〈εi〉 = ε0P (wi)

m. The
brackets 〈. . .〉 denote the average in time, and s (v) is the best–matching neu-
ron with respect to (1). This approach finally leads to the new magnification
law

α′ = αNG · (m + 1) (6)

In real applications one has to estimate the generally unknown data distribu-
tion P . This may lead to numerical instabilities of the control mechanism [5].
Recently, an new approach for magnification control of the SOM was intro-
duced [3] which is a generalization of a winner relaxing modification [6]. This
approach provides a control scheme which is independent of the shape of the
data distribution [3]. We transfer these ideas to the NG as follows:
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Analog to the generalized winner relaxing SOM [3], we introduce the winner
relaxing NG by defining the learning rule as

�wi = εhλ (i,v,W) (v − wi) + R (ξ, κ) (7)

with the winner relaxing term

R (ξ, κ) = (ξ + κ) (v − wi) δis − κδis

∑
j

hλ (j,v,W) (v − wj) (8)

depending on weighting parameters ξ and κ. The original motivation in [6] was
to derive a learning rule from an average reconstuction error including the effect
of shifting voronoi borders, which results in an additional term for the winner,
i. e. (7) with ξ = 0, κ = 1

2 . However, one can utilize the winner relaxing term
to influence the magnification by global choice of κ as in [3].

We now derive a relation between the densities ρ and P in analogy to [8]
for the winner relaxing learning (7). The procedure is very similar as in [8, 10].
We can write the average change 〈�wi〉 for the winner relaxing NG (7) as

〈�wi〉 = I1 + I2 + I3 (9)

with I1 =
∫

P (v) hλ (i,v,W) (v − wi) dv, (10)

I2 =
∫

P (v) (ξ + κ) ·δis · (v − wi) dv (11)

and I3 = −
∫

P (v) δisκ
∑

j

hλ (j,v,W) (v − wj) dv (12)

The integral I1 is the usual one according to the NG dynamics, yielding [8]

I1 = ε′
(

∂rP − P · d + 2
d

· ∂rρ

ρ

)
(13)

with ε′ =
ε0

(τd · ρ)
2+d

d

∫
D

hλ (x) · ‖x‖2
dx. (14)

We further assume a continuum approach such that for an input v we have
ws = v [9]. Then I2 vanishes in the continuum limes because the integration
over δis only contributes for ws, but in this case (v − ws) = 0 holds. While I2

may contribute in higher orders, no influence on the entropy was found for the
choice κ + ξ = 0 instead of ξ = 0. We now pay attention to the I3-integral:

The continuum assumption made above allows a turn over from sum∑
j hλ (wj ,v,W) (v − wj) to the integral

∫
hλ (w,v,W) (v − w) dw in (12).

A procedure completely analog to the derivation of the NG magnification gives

I3 =
∫

P (v) δisκ

[∫
hλ (x) · r (x) · J (x) dx

]
dv (15)

with the new integration variable x (r) = r̂ · ki (r)
1
d and the d × d–Jacobian–

matrix J (x) = det(∂rk/∂xl) with r = v − wi.
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I3 only contributes to 〈�wi〉 for the winning weight (realized by δis), i.e.,
for wi = ws which is equal to v according to the continuum approach. Hence,
the integration over v yields

I3 = κP (wi) ·
∫

hλ (x) · r (x) · J (x) dx (16)

If hλ (ki (r)) rapidly decreases to zero with increasing r, we can replace the
quantities r (x), J (x) by the first terms of their respective Taylor expansions
around the point x = 0 neglecting higher derivatives. We obtain

x (r) = r (τdρ (wi))
1
d

(
1 +

r · ∂rρ (wi)
d · ρ (wi)

+ O (
r2

))
(17)

which corresponds to

r (x) = x (τdρ (wi))
− 1

d

(
1 − (τdρ (wi))

− 1
d · x · ∂rρ (wi)

d · ρ (wi)
+ O (

x2
))

(18)

with τd = π
d
2 /Γ

(
d
2 + 1

)
as the volume of a d–dimensional unit sphere [8].

Further,

J (x) =
(
J (0) + xk

∂J
∂xk

+ . . .
)

= (τd · ρ)−1
(
1 − (τd · ρ)−

1
d

(
1 + 1

d

) · x · ∂rρ
ρ

)
+ O (

x2
) (19)

and, hence, ∂J
∂x

∣∣
x=0

= − (τd · ρ)−(1+ 1
d ) ∂rρ

ρ . Therefore, the integral in equation
(16) can be rewritten as

I3 = ε′κP (τd · ρ)−
1
d

∫
D

hλ (x) · x·
·
(
(τd · ρ)−1 − (

1 + 1
d

)
(τd · ρ)−(1+ 1

d ) · x · ∂rρ
ρ + . . .

)
·
(
1 − (τd · ρ)−

1
d · x · ∂rρ

d·ρ + . . .
)

dx

(20)

The integral terms in (20) of odd order in x vanish because of the rotational
symmetry of hλ (x). Then (16) yields, neglecting terms in higher order in x,

I3 = ε′κP
d + 2

d

∂rρ

ρ
(21)

Taking together (13) and (21), the stationary solution of (7) is given by

〈�wi〉 = 0 = ∂rP − P · d + 2
d

· ∂rρ

ρ
+ Pκ

d + 2
d

∂rρ

ρ
(22)

This differential equation has the same form as the one for the usual Neural
Gas (13). The magnification exponent of the Winner Relaxing Neural Gas is
now given by

αWRNG =
1

1 − κ

d

d + 2
=

1
1 − κ

αNG. (23)
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Now two direct observations can be made: Firstly, the magnification exponent,
same as in [3], appears to be independent of the additional diagonal term (con-
trolled by ξ) for the winner. Therefore ξ = 0 again is the usual setting. Further,
by adjusting κ appropriately, the magnification exponent can be adjusted, e.g.
to the most interesting case of maximal mutual information (where α̂ = 1)

κopt =
2

d + 2
. (24)

If the same stability borders |κ| = 1 of the Generalized Winner-Relaxing SOM
also apply here, one can expect to increase the NG exponent by positive values
of κ, or to lower the NG exponent by a factor 1/2 for κ = −1. In contrast to the
Winner Enhancing SOM, where the relaxing term has to be inverted (κ < 0)
to increase the magnification exponent, for the neural gas positive values of κ
are required to increase the magnification exponent. While the exponent still
remains dependent on the dimension of the data, once this dimension is known
(for instance estimated according to [2] or [4]), the parameter κ can be set a
priori to obtain a neural gas of maximal mutual information. In this approach
it is not necessary to keep track of the local reconstruction errors and firing
rate for each neuron to adjust a local learning rate.

However, one has to be cautious when transferring the λ → 0 result obtained
above (which would require to increase the number of neurons as well) to a
realistic situation where a decrease of λ with time will be limited to a final
finite value to avoid the stability problems found in [5]. If the neighborhood
length in SOM is kept small but fixed for the limit of fine discretization, the
neighborhood function of the second but one winner will again be of order 1
(as for the winner). For the NG however the neighborhood is defined by the
rank list. As the winner is not present in the I2 + I3 integral, all terms share
the factor e−λ by hλ(k) = e−λhλ(k − 1) which indicates that in the discretized
algorithm κ has to be rescaled by e+λ to agree with the continuum theory.

3. Numerical results
A numerical study shows that the winner-Relaxing sum can indeed be used
to increase the mutual information of a map generated by the Neural Gas
algorithm. Using a standard setup as in [5] of 50 Neurons and 107 training
steps with a probability density P (x1 . . . xd) =

∏
i sin(πxi), with fixed λ = 1.5

and ε decaying from 0.5 to 0.05, the entropy of the resulting map computed
for an input dimension of 1, 2 and 3 is plotted in Fig. 1. The entropy shows
a dimension-dependent maximum approximately at κ = 2

d+2eλ. The scaling of
the position of the entropy maximum with input dimension is in agreement with
the continuum theory, as well as the prediction of the opposite sign of κ that
has to be taken to increase mutual information. Our numerical investigation
indicates that the prefactor in fact has to be taken in account for finite λ and
a finite number of neurons.

To conclude, within a broad range around the optimal κ the entropy is close
to the maximum

∑N
i=1 Pi log(Pi) = log(N) given by information theory.
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Figure 1: Plot of the entropy H curves for varying values of κ for one- (�), two- (+),
and three-dimensional (�) data. The entropy has the maximum log(50) � 3.912 if
the magnification equals unity [11]. The arrows indicate the rescaled κopt-values for
the respective data dimensions.

References
[1] H.-U. Bauer, R. Der, and M. Herrmann. Controlling the magnification factor of self–

organizing feature maps. Neural Comp., 8(4):757–771, 1996.

[2] J. Bruske and G. Sommer. Dynamic cell structure learns perfectly topology preserving
map. Neural Computation, 7(4):845–65, July 1995.

[3] J. C. Claussen. Generalized Winner-Relaxing Kohonen Feature Maps. e-print cond-mat,
(http://arXiv.org/cond-mat/0208414), 2002.

[4] P. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors. Phys-
ica D, 9:189–208, 1983.

[5] M. Herrmann and T. Villmann. Vector quantization by optimal neural gas. In W. Ger-
stner, A. Germond, M. Hasler, and J.-D. Nicoud, editors, Artificial Neural Networks –
Proc.ICANN’97, Lausanne, pages 625–630. LNCS 1327, Springer Verlag Berlin Heidel-
berg, 1997.

[6] T. Kohonen. Self-Organizing Maps: Optimization approaches. In T. Kohonen,
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