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Abstract :. In this paper a fully connected RTRL neural network is studied. In
order to learn dynamical behaviours of linear-processes or to predict time
series, an autonomous learning algorithm has been developed. The originality
of this method consists of the gradient based adaptation of the learning rate
and time parameter of the neurons using a small perturbations method.
Starting from zero initial conditions (neural states, rate of learning, time
parameter and matrix of weights) the evolution is completely driven by the
dynamic of the learning data. Two examples are proposed, the first one deals
with the learning of second order linear process and the second one with the
prediction of the chaotic intensity of NH3 laser. This last example illustrates
how our network is able to follow high frequencies.

1.Introduction

Recurrent neural networks are very helpful to solve dynamical problems. Properties
of dynamical recurrent networks such as oscillatory or chaotic behaviours were
studied between 1989 and 1995 [1, 2]. Recently, various applications have been
developed using such networks. Numerical series prediction was studied by Chang &
al. with application examples such as simulation of a second-order low pass filter and
chaotic dynamic of the intensity pulsations of NH3 laser [3]. This last application was
also investigated by M.W.Mak & al. in the context of RTRL (Real Time Recurrent
Learning) algorithm improvement [4]. Plant control and identification applications are
also often concerned by searchers and engineers works [5, 6, 7, 8].
Various algorithms are used by different authors for adaptation and learning. Among
these algorithms let us notice an increasing interest for the RTRL proposed since 1989
by R.J.William and D.Zipser [9, 10]. According to the considered applications,
several improvements were brought to this algorithm: the sub-grouping strategy [11],
the constrained RTRL and the conjugate Gradient Algorithm [3, 4, 12].
In this paper an original method has been developed for the implementation of the
fully connected networks RTRL independently of any initialisation stage. The main
advantage of this method is that the dynamic of the system to learn does not have to
be exactly known. Starting from zero initial conditions, the proposed network adapts
itself, so as the learning rate and the time parameter, in order to track dynamical
behaviours. This property is useful for time varying and/or unknown processes.
Simulations, for learning of linear processes and numerical series prediction, prove
the efficiency of the method.
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2.Network structure  and dynamics

The proposed network is dynamic, fully connected, continuous and recurrent (figure
1). It is entirely defined by the following equations:
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The function Xi(t) represents the output of the ith node whose external input is Ii(t) and
whose activation is Ui(t). The parameter τ is a time-constant. The matrix of weights
W = [wij(t)], (i, j) ∈  {1,…,N}² is defined for the connections between the neurons.
Each entry wij(t) of the matrix W stands for the weight from the jth neuron to the ith

neuron. Each neuron can be an input or an output or both at the same time. All
neurons take part of the calculation of the relation between inputs and outputs. Let us
define by Out the set of the neurons indices that are considered as outputs and by In
the set of the neurons indices which receive external inputs. Let us define the output
vector of the network S(t) = [Xi(t)]

T, i ∈  Out, the vector of the desired outputs Sd(t) =
[Xdi(t)]

T, i ∈  Out, and the input vector I(t) = [Ii(t)]
T, i ∈  In.

Figure 1. Fully connected MIMO Neural Network.

Let us consider the instantaneous square error between the desired output vector and
the network output vector. The RTRL method described by various authors [1, 9, 10,
13] consists in doing the adaptation of the weight matrix W by means of the gradient
of the average error. The use of a small perturbations method [12, 13] results in the
real time adaptation [10]:
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From equations (1) to (3), equation (4) is deduced:
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iδ is the Kronecker symbol.
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This learning algorithm, as many other ones, requires an initialisation stage [1, 2, 14].
The vector X(0) = [Xi(0)]T, i ∈  {1..N}, the weights matrix W and the parameters η
and τ are generally randomly selected or deduced from the system dynamics. In the
following section, the η and τ initialisation problem is solved through an automatic
process starting from zero initial conditions.

3.  Automatic adaptation of the parameters τ and η

In order to obtain an automatic adaptation of τ and η, let us define τ(t) and η(t) as:
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These relations have been used in order to adapt these parameters according to the
error minimisation such as weigh matrix. Using the relation (2) we can write:
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Then a small perturbation method increased by a term ε/τ(t) allows us to write:
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Let us notice that the network evolves in an autonomous way starting from zero initial
conditions, according to the value ε, indeed, dKk(0)/dt = ε. The term ε/τ(t) is added in
order to avoid that Ki(t) reaches a zero value. The same holds for η. The adaptation of
η and τ parameters is obtained from equations (5) to (7). The parameters reach the
best values according to the system dynamic.

4.Simulations

In order to test the efficiency of this algorithm, two different problems have been
investigated. First, the network learns the dynamic of a SISO second order linear-
process. Secondly, the network has been trained to predict the chaotic evolution of the
intensity of a NH3 laser time series. Simulations are performed for a various number
of delayed inputs that are necessary in order to learn the dynamic of a process, by
tacking into account the last n output responses. The total number of neurons depends
on the number of delays. The nodes 1 to N-1 are input neurons. The neuron 1 receives
the input signal E(t) and the neurons 2 to N-1 receive the delayed output signals S(t-
1), S(t-2),…, S(t-N+2). The node N is the output node that provides an estimation of
the output signal S(t) at time t. This algorithm acts in such a manner (zero initial
conditions) that additional neurons will never evolve from zero.

A second order system defined by H(p) = 3/(p²+2p+8) = S(p)/E(p) is investigated.
Using the input signal presented on figure 2, output data are processed for the system.
The network is composed of four neurons. The first one receives the input I1(t)=E(t),
the second and third ones are the delayed outputs, respectively I2(t)=S(t-1), I3(t)=S(t-
2) and the last one is the network output X4(t).
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Figure 2. Learning of H(p): (a) Input signal for training. (b) Test of the network response after

1, 2 and 50 epochs of  learning.

Data are presented to the network and the weights, η and τ are updated after each
presentation, ε is set to 1. The responses of the network carried out for a data set of
2500 samples and the mean squared error (MSE) are presented in figure (2) and (3).
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Figure 3. Learning of H(p) : (a) MSE versus epochs. (b) η and τ versus epochs.
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Figure 4. Validation of the trained neural network: (a) Input signal for the test after 50 learning

epochs. (b) Comparison of the responses of the system and network.

The evolution of the MSE is fast during the first few epochs of learning. The final
value η=1.2 is higher than the usual one. In [3, 4] this parameter is respectively set to
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0.1 and 0.5. The free evolution of η speeds up the learning. So one can assert that a
small value of the learning rate is not essential for such a learning task. The growing
value of τ proves that an adaptation of the time parameter increases the efficiency of
the network as it changes the dynamic of the nodes.
In order to test the quality of the learning, the signal of the figure (4a) has been
presented to the network after the 50th epoch of previous learning stage. On the figure
(4b) the response of the 2nd order system and the one of the network are compared.
For this test the MSE is 0.000024 and the network behaves exactly as the system.

For the time series prediction, a data set of 1000 samples from the Santa Fe Institute
Time Series Prediction and Analysis Competition is used [15]. The data concern the
evolution of the chaotic intensity pulsations of a far-infrared NH3 laser (figure 5).
In order to compare theses results to those of referenced works [3, 4] a four node
network is used to predict the NH3 laser time series. The first node receives the first
delayed output I1(t) = S(t-1), the second and third nodes receive respectively I2(t) =
S(t-2), I3(t) = S(t-3) and the last neuron is an estimation of S(t). For this simulation ε
equals 1.
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Figure 5. Intensity pulsations of a far-infrared NH3 laser.

The MSE reaches 0.0022  after 80 training epochs. Table 1 presents a comparison of
the performances of this algorithm with the results presented in referenced works [3,
4]. For this algorithm, the MSE of 0.0022 is obtained after only 60 epochs of learning
while for the others algorithms the presented results were obtained for 1000 epochs
(W-F. Chang & al.) and 2000 epochs (M.W.Mak & al.). TE (Time per Epoch) results
from the CPU time divided by the number of epochs. The best TE are obtained by the
SGRTRL and the presented Autonomous RTRL method (TE=0.0935 and 0.1)

M.W.Mak & al. [4]
 P Pro 200MHz

W-F Chang & al [3]
P200 MHz

Present algorithm
P400 MHz

RTRL SGRTRL RTRL CGRL Autonomous RTRL
MSE 0.002046 0.017165 0.00099 0.000565 0.0022

CPU time(s) 456 187 273 1854 8
TE 0.228 0.0935 0.273 1.854 0.1

Table 1 : NH3 laser prediction results : MSE, CPU time and TE.
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5. Conclusions

Fully connected RTRL neural networks have been investigated in this paper. The
main contribution concerns the dynamic adaptation of the learning rate and time
parameter. Such a method has some advantages that have been pointed out for
dynamical behaviours learning and time series prediction. The size of the proposed
RTRL neural networks depends only on the number of inputs and outputs. Moreover,
starting from zero initial conditions, it does not require any initialisation procedure.
Finally, comparisons with some related works emphasis the efficiency of the
proposed algorithm. Prediction and control design of industrial processes will be
considered in our further works. Constraints on weights will also be investigated in
order to prevent instability behaviours and over-learning that may occur with some
applications. Overfitting problem has to be further studied.
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