
On the weight dynamics of recurrent learning

U. D. Schiller and J. J. Steil

Neuroinformatics Group, Bielefeld University, Germany
{uschille,jsteil}@techfak.uni-bielefeld.de, www.jsteil.de

Abstract. We derive continuous-time batch and online versions of the recently
introduced efficient O(N2) training algorithm of Atiya and Parlos [2000] for
fully recurrent networks. A mathematical analysis of the respective weight dy-
namics yields that efficient learning is achieved although relative rates of weight
change remain constant due to the way errors are backpropagated. The result is
a highly structured network where an unspecific internal dynamical reservoir can
be distinguished from the output layer, which learns faster and changes at much
higher rates. We discuss this result with respect to the recently introduced “echo
state” and “liquid state” networks, which have similar structure.

1 Introduction

Many recurrent neural architectures ranging from fully connected to partially or lo-
cally RNNs have been developed for various applications in time-series prediction
and generation, speech recognition, adaptive control, or biological modeling. Despite
their practical success, one of the main drawbacks is the known high complexity of
learning algorithms. Besides the credit assignment problem, these also have to cope
with the potential for dynamically rich behavior reaching from globally multistable
networks for content addressable memory up to oscillating pattern generators or even
provable chaotic networks. Thus there is ongoing research to devise efficient recurrent
learning schemes, among which are a large number of approaches to use regularization
techniques (Hammer and Steil [2002]).

Some insight in recurrent learning has been gained recently by showing that many
of the well known algorithms like RTRL, BPTT can be unified and understood as im-
plementing different ways to minimize the standard quadratic error functional (Atiya
and Parlos [2000]). In this context there has also been introduced a new discrete time
O(N2)-efficient algorithm, which we will reference as Atiya-Parlos recurrent learn-
ing (APRL for short). Seemingly very different approaches independently developed
by Jaeger [2001, 2002] under the notion “echo state network” and Natschläger et al.
[2002] as “liquid state machine” follow the idea to use a recurrent network as a kind
of dynamic reservoir, which can store information about the time development of the
inputs and then allows to learn efficiently a linear readout function.

In this contribution we will show that in fact APRL leads to a network structure
which is very similar to the idea of using a dynamic reservoir. In Section 2, we derive
continuous-time batch and online versions of the algorithm. In Section 3, we prove
that the kind of error propagation in Atiya and Parlos [2000] leads to constant rates of
weight change. In Section 4, we discuss and compare this result with respect to the
“echo state network” and “liquid state machine” concept.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 73-78

2 The Atiya-Parlos continuous time algorithms

For further reference we give a continuous-time version of APRL1 for the dynamics:

dx

dt
= −x + Wf(x), (1)

where f is applied componentwise to the vector x (or xT later). It is discretized as

x((k̂ + 1)∆t) = (1 − ∆t)x(k̂∆t) + ∆tWf(x(k̂∆t)). (2)

From this, we get the constraint equation

g((k̂ + 1)∆t) ≡ −x((k̂ + 1)∆t) + (1 − ∆t)x(k̂∆t) + ∆tWf(x(k̂∆t)) = 0. (3)

Let O be the set of output neurons, then the error for target outputs dj is given by

E =
1
2

K∑
k̂=1

∑
j∈O

[xj(k̂∆t) − dj(k̂∆t)]2. (4)

In the following we use as time variable k = k̂∆t to skip the dependence on ∆t and
collect the relevant quantities in vectors to write (wT

i are the rows of W)

x ≡ (xT (1), . . . , xT (K))T , g ≡ (gT (1), . . . , gT (K))T , w ≡ (wT
1 , . . . , wT

N)T .

The key idea of APRL is to interchange the usual role of the states x and the weights
w by first computing the gradient of E with respect to x:

∆x =
∂E

∂x
= (e(1), . . . , e(K)), where [e(k)]i =

{
xi(k) − di(k) i ∈ O
0 otherwise .

Note that x, g and w defined above are column vectors, while ∆x is a row vector. In a
second step, the constraint equation (3) is used to compute weight changes ∆w which
generate a small step along −∆x:

∂g

∂w
∆w ≈ η

∂g

∂x
∆xT . (5)

This equation is solved using a pseudo-inverse for ∂g/∂w and yields the training rule

∆wbatch = η

[(
∂g
∂w

)T (
∂g
∂w

)]−1 (
∂g
∂w

)T
∂g
∂x

∆xT . (6)

In line with Atiya and Parlos [2000], equation (6) can be reformulated as

∆Wbatch(K) =
η

∆t
B(K)V −1(K), (7)

1Though straightforward to derive (Atiya and Parlos [2000]), a continuous-time version of APRL has to
the best of our knowledge not yet been published elsewhere.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 73-78

using D(k) = diag(f ′(xi(k))) and the definitions

V (K) =
K−1∑
k=0

f(x(k))f(xT (k)), (8)

B(K) =
K∑

k=1

γ(k)f(xT (k−1)), (9)

γ(k) = −eT (k) + [(1−∆t)I + ∆tWD(k−1)] eT (k−1). (10)

Here γ(k) = (∇xg(k))∆xT . Applying the same manipulations and using a numerical
approximation for the inversion of V (k) as in Atiya and Parlos [2000], we get the on-
line algorithm:

1. initialize x(0) to random values

2. k=1: compute x(1) according to (2), γ(1) = −eT (1), B(1) = γ(1)f(xT (0)),

V −1(1) = I/ε − f(x(0))f(xT (0))/[ε2 + εf(xT (0))f(x(0))], 1 >> ε > 0,

W (1) = W (0) + ∆W (1) = W (0) +
η

∆t
B(1)V −1(1).

3. k=k+1: compute x(k) according to (2),

γ(k) = −eT (k) + [(1−∆t)I + ∆tWD(k−1)] eT (k−1)

∆W (k) =
η

∆t

(
γ(k) − B(k−1)V −1(k−1)f(x(k−1))

)
[V −1(k−1)f(x(k−1))]T

1 + f(xT (k−1))V −1(k−1)f(x(k−1))

W (k) = W (k−1) + ∆W (k), B(k) = B(k−1) + γ(k)f(xT (k−1))

V −1(k) = V −1(k−1) − V −1(k−1)f(x(k−1))[V −1(k−1)f(x(k−1))]T

1 + f(xT (k−1))V −1(k−1)f(x(k−1))

4. Repeat 3.) until end of data.

3 Analysis of the weight dynamics

In the following, we consider the case of only one output neuron, say x1. It turns out
that the weight updates in the non-output part of the weight matrix scale equally and
with constant rate in every column. The scaling factors are proportional to the weights
in the first column. Formally, this is stated as

∀i > 1, j > 1 : ∆Wik(K) =
Wi1(0)
Wj1(0)

∆Wjk(K). (11)

Lemma: Let i > 1, j > 1. Then ∀K

γi(K) =
Wi1(0)
Wj1(0)

γj(K), (12)

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 73-78

Bik(K) =
Wi1(0)
Wj1(0)

Bjk(K), (13)

Wi1(K) =
Wi1(0)
Wj1(0)

Wj1(K). (14)

Note that Wj1(0) �= 0 can be assured by the initialization of the weights.
Proof: For one output neuron, only the first component of the error vector e(K)

is non-zero:
∀i > 1∀K : ei(K) = 0. (15)

We show 11 to 14 by induction on the time step K.
K=1: Let i > 1, j > 1. Then

γi(1) = −eT
i (1) = 0 = −eT

j (1) = γj(1)

Bik(1) = γi(1)f(xT
k (0)) = 0 = γj(1)f(xT

k (0)) = Bjk(1)

∆Wik(1) =
η

∆t

∑
h

Bih(1)V −1
hk (1) = 0 =

η

∆t

∑
h

Bjh(1)V −1
hk (1) = ∆Wjk(1)

Wi1(1) = Wi1(0) + ∆Wi1(1) = Wi1(0) =
Wi1(0)
Wj1(0)

Wj1(0)

=
Wi1(0)
Wj1(0)

(Wj1(0) + ∆Wj1(1)) =
Wi1(0)
Wj1(0)

Wj1(1)

K ⇒ K+1: Let i > 1, j > 1.

γi(K + 1)
γj(K + 1)

=
−eT

i (K + 1) +
∑

h[(1 − ∆t)I + ∆tW (K)D(K)]iheT
h (K)

−eT
j (K + 1) +

∑
h[(1 − ∆t)I + ∆tW (K)D(K)]jheT

h (K)

=
∆tWi1(K)f ′(x1(K))eT

1 (K)
∆tWj1(K)f ′(x1(K))eT

1 (K)
=

Wi1(K)
Wj1(K)

=
Wi1(0)
Wj1(0)

If e1(K) = 0, then γi(K + 1) = γj(K + 1) = 0 and 12 trivially holds.

Bik(K + 1)
Bjk(K + 1)

=
Bik(K) + γi(K + 1)f(xT

k (K))
Bjk(K) + γj(K + 1)f(xT

k (K))

=
Wi1(0)
Wj1(0)

(Bjk(K) + γj(K + 1)f(xT
k (K)))

Bjk(K) + γj(K + 1)f(xT
k (K))

=
Wi1(0)
Wj1(0)

If Bjk(K + 1) = 0 then also Bik(K + 1) = 0 and 13 holds.

∆Wik(K + 1)
∆Wjk(K + 1)

=
(γi(K + 1) − ∑

h Bih(K)[V −1(K)f(x(K))]h)[V −1(K)f(x(K))]Tk
(γj(K + 1) − ∑

h Bjh(K)[V −1(K)f(x(K))]h)[V −1(K)f(x(K))]Tk

=
Wi1(0)
Wj1(0)

(γj(K + 1) − ∑
h Bjh(K)[V −1(K)f(x(K))]h)

γj(K + 1) − ∑
h Bjh(K)[V −1(K)f(x(K))]h

=
Wi1(0)
Wj1(0)

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 73-78

2

4

6

8

0 5 10 15 20 25

Mean Square Error vs. Epochs

Atiya Parlos

RTRL

Epoch

0.0006

0.0012

0.0018

0.0024

0 5 10 15 20 25

Average Weight Change
vs. Epochs

inner weights AP

output layer RTRL

inner weights RTRL

output layer Atiya Parlos

Epoch

Figure 1: Left: The respective errors show a clear minimum after 15 epochs for APRL,
whereas RTRL continuously improves. Right: Rates of change of the output vs. inter-
nal weights for RTRL (dashed) and the Atiya-Parlos algorithm avaraged over respec-
tive epochs. The learning rate was 0.05 for RTRL and 1.0 for APRL.

If ∆Wjk(K + 1) = 0 then also ∆Wik(K + 1) = 0 and 11 holds. Finally

Wi1(K + 1)
Wj1(K + 1)

=
Wi1(K) + ∆Wi1(K + 1)
Wj1(K) + ∆Wj1(K + 1)

=
Wi1(0)
Wj1(0)

(Wj1(K) + ∆Wj1(K + 1))

Wj1(K) + ∆Wj1(K + 1)
=

Wi1(0)
Wj1(0)

If Wj1(K + 1) = 0 then also Wi1(K + 1) = 0 and hence 14 holds. Hence we have
shown by induction, that 11 to 14 hold.

In summary, the above result shows that there are two different groups of weights:
those who connect arbitrary neurons to the output neuron and which may arbitrarily
change and the majority of weights interconnecting the inner neurons (reservoir neu-
rons), whose rates of change are systematically coupled and determined beforehand
by the initialization. This result holds for the case of a single output neuron and does
not easily generalize to more than one output.

An explanation for this sort of linear learning (scaling) in the reservoir can be
found in equation (10), which shows the special way how errors e(k) are propagated.
As APRL relies on evaluating the gradients of the constraint equation (3), the errors
enter in (10) only partially, once to influence the change of the output rates by means of
−eT (k)+(1−∆t)IeT (k−1) and as part of a scaling factor ∆tWD(k−1)eT (k−1) for the
reservoir. This factor can be interpreted easily, the magnitude of the reservoir scaling
in the i−th column is proportional to the error in the last time-step times [D(k−1)]11 =
f ′(x1(k−1)), which is small for activations x1 close to saturation. This keeps a balance
between changes and the need to keep activations in a working area around zero. In
further time-steps k + s, s > 1 the error e(k) is not relevant.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 73-78

4 Discussion

We compared the online variant of APRL with the online variant of RTRL from Pearl-
mutter [1995]. The task was to learn an operator implicitly given by the Roessler
dynamics and is described in more detail in Steil and Ritter [1999]. The parameters of
the respective algorithms where chosen such that a comparable behavior in the mean
square error was achieved (Fig. 1 (left)). As in the discrete time case Atiya and Parlos
[2000], the learning rate for APRL can be chosen much higher than that for RTRL.
As expected, an analysis of the rates of change reveals that the output weights change
much more rapidly than the weights connecting the inner neurons (Fig. 1 (right)).

The partitioning of the weights in fast and uncoupled learning output weights and
coupled inner connections shows that the Atiya-Parlos approach is based on a func-
tional division between a (linear) readout layer and a larger dynamical reservoir of
inner neurons. As discussed above, the output errors are not directly propagated to
the reservoir and rather determine only the magnitude of the scaling factors, which
are predefined by the initialization. From this observation we expect that APRL in its
current form should perform much worse in tasks with long term dependencies only,
at least as long as the reservoir is relatively small. Further, APRL should be more sen-
sitive to local deviations and indeed our experiments showed problems, when there
were long transients to the attractor. We also found that the initialization is a relevant
performance factor and, though always good minima were found, not always the best
error achieved was comparable to RTRL. On the other hand, we believe that the fast
learning at low complexity O(n2) motivates further investigations on this algorithm.

Obviously the data driven and coupled scaling of that initially randomly connected
reservoir provides enough memory to allow successful function approximation. This
exactly resembles the functional modules of the “echo state” or “liquid state” net-
works. However, there are two major differences which may provide also more in-
sights to these approaches: (i) there is no need for a “big” network (≈ 100 neurons)
to provide the necessary reservoir, (ii) the functional specialization is generated by
the error backpropagation of the Atiya-Parlos algorithm itself based on the standard
error function and the constraint equation. Future investigations may be conducted
with respect to whether the “echo state” and “liquid state” networks may as well be
interpreted as an efficient minimization with respect to a standard error function.

References
A. B. Atiya and A. G. Parlos. New results on recurrent network training: Unifying the algo-

rithms and accelerating convergence. IEEE Trans. Neural Networks, 11(9):697–709, 2000.

B. Hammer and J. J. Steil. Tutorial: Perspectives on learning with recurrent neural networks.
In Proc. of ESANN 2002, pages 357–368, 2002.

H. Jaeger. The ”echo state” approach to analysing and training recurrent neural networks.
Technical Report GMD Report 148, 2001.

H. Jaeger. Adaptive nonlinear system identification with echo state networks. In NIPS, 2002.

T. Natschläger, W. Maass, and H. Markram. The ”liquid computer”: A novel strategy for real-
time computing on time series. TELEMATIK, 8(1):39–43, 2002.

B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural networks: A survey.
IEEE Tansactions on Neural Networks, 6(5):1212–1228, 1995.

J. J. Steil and H. Ritter. Recurrent learning of input-output stable behaviour in function space:
A case study with the Roessler attractor. In Proc. ICANN 99, pages 761–766. IEE, 1999.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 73-78

