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Abstract. In this tutorial paper about mathematical aspects of neural networks,
we will focus on two directions: on the one hand, we will motivate standard math-
ematical questions and well studied theory of classical neural models used in ma-
chine learning. On the other hand, we collect some recent theoretical results (as
of beginning of 2003) in the respective areas. Thereby, we follow the dichotomy
offered by the overall network structure and restrict ourselves to feedforward net-
works, recurrent networks, and self-organizing neural systems, respectively.

1 Introduction
Many good neural algorithms are designed using mathematics or they are formulated
in terms of mathematics. Some good neural models can be accompanied by a rigid
mathematical investigation. And we would be happy to find a rigid mathematical
analysis for other good neural models for which a theoretical investigation has not
yet been possible. Hence this paper should, per definition, cover a huge amount of
existing and future papers on neural networks. Since this is obviously impossible,
we restrict ourselves to a subjective choice of classical results which we believe are
of importance. In addition, we incorporate pointers to recent results in the literature.
We will tackle classical neural models used for machine learning: feedforward net-
works, recurrent architectures, and self-organizing systems, neglecting more recent
models like cellular networks or spiking models [96, 130], statistical counterparts like
Gaussian processes or Bayes point machines [53, 64], and other learning scenarios like
reinforcement learning [128]. Focusing on machine learning tasks, we further neglect
neural architectures which model biological neural networks or cognitive systems.

Naturally, mathematics is introduced in neural networks literature for different
aims: some mathematics directly yields efficient and well founded learning algorithms
like support vector machines (SVMs) [24]; some mathematics tries to explain effects
of training or to achieve guarantees for training – and often finally fails to describe
the initial setting like in the case of the loading problem for feedforward networks
[34] or the convergence problem of the self-organizing map [67]; some mathematics
is done for esthetical reasons (people do often not agree on which papers fall within
this category); and finally some rare mathematics describes the real life [85]. In this
article, we will include mathematical results that help to understand the respective
setting regardless of their direct practical applicability.
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2 Feedforward networks
Feedforward networks (FNNs) compute a possibly highly nonlinear function fW :

R
n → R

o, composing simple functions provided by the single neurons which are
connected in a directed acyclic graph. Thereby, the single neurons typically compute
a function of the form x �→ σ(wt

x) for sigmoidal networks, or σ(|w−x|) for radial
basis function networks, where σ : R → R is the activation function and w are the
neuron’s weights. fW is parameterized by the collection of all neurons’ weights W .
FNNs can be used to learn an unknown regularity f based on a couple of examples
{(xi, f(xi)) | i = 1, . . . ,m}. Commonly, training takes place in three steps: selec-
tion of the neural architecture and the hyperparameters of training, mostly done by
crossvalidation; optimization of the weights on the given training set via error mini-
mization, often done by some gradient methods; and estimation of the generalization
ability using the test error on a test set not taken for training. Often, training and
further optimization of the architecture are mixed, e.g. using growing and pruning al-
gorithms or training with additional regularization. In the case of SVM, training is
even explicitly formulated in terms of optimizing architectural quantities, the margin,
under the constraint that the given data points are mapped correctly. The standard
way of training poses three mathematical questions which are to be answered for the
respective neural architecture and training algorithm: 1) What are the approximation
capabilities of the respective architecture? If the neural architecture is not capable of
approximating the (unknown) function to be learned then we cannot, in principle, find
an appropriate architecture to start training. 2) How do good error minimization algo-
rithms look like and what is the complexity of training? We have to find guarantees
for the convergence of the algorithm and we should investigate the expected runtime.
And finally: 3) Can the generalization ability of neural architectures be guaranteed
such that we can expect adequate behavior for future data we would like to predict?

2.1 Approximation properties
The universal approximation property of FNNs with various activation functions has
been established in [70, 102, 116], for example. In general, one hidden layer is suf-
ficient for approximating any continuous or measurable function, respectively, up to
any desired degree of accuracy on compact sets. Hence the search space for appropri-
ate architectures in a learning task can be limited to one or two hidden layers. If only
a finite number of points is given, the number of neurons sufficient for interpolation
can be limited, as demonstrated in [124]. Note that the proofs are, at least in theory,
constructive. This fact is used in [81] to design an alternative (though possibly not
yet very efficient) training algorithm. An extension of the universal approximation
result to networks with functional inputs is presented in [111]. Recently, the univer-
sal approximation capability of SVMs has been established, too [57, 127]. However,
achieving a small margin is thereby not possible for a large number of concepts [14]
such that the capacity of the architecture cannot be bounded.

Apart from the in principle guarantee that neural networks can approximate any
reasonable function and apart from concrete bounds for finite training sets, approxi-
mation rates are of particular interest. They characterize the quality of the approxi-
mation which can be achieved if a function (possibly with additional constraints) is
approximated by n neurons. One of the first results in this direction can be found in
[5, 73] where convergence of order 1/n is established for functions with limited norm
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which is measured incorporating the activation function. Generalizations thereof can
be found in [83, 86], deriving e.g. dimension independent geometric convergence of
neural networks for specific function classes. Starting from these results, further math-
ematical questions concerning the capacity of possibly restricted architectures can be
investigated, such as the capacity of FNNs with restricted weights [42], the unique-
ness of parameters [44], or the design of alternative transfer functions for FNNs re-
spectively kernels for SVMs [43, 72]. A problem adapted number of neurons can
be achieved with alternative techniques which increase the number of neurons during
training, such as proposed for RBF networks by Li, Luo, and Qi in this volume.

2.2 Complexity of training
Usually, network training aims at finding weights such that the given data set is
mapped correctly to the desired output values. FNNs are often trained by different
gradient descent methods, for which convergence can be established [82]. However,
the algorithm might get stuck in local optima of the error function. Hence, the question
of the in principle complexity of neural network training arises. This loading problem
is a prime example for a process where mathematics tries to get nearer and nearer to
scenarios as they occur in practical problems, without actually achieving this goal up
to now. It follows directly e.g. from [99] that training a fixed FNN with the Heavyside
activation function can be done in polynomial time. However, most existing algo-
rithms do not take the specific architecture into account. Hence the loading problem
should be considered in a more general setting taking arbitrary architectures as input.
Starting with the work [20, 75], it is known that general neural network training is
NP-hard. More precisely, the paper of Blum and Rivest [20] states the fact that the
loading problem is NP-hard for multilayer architectures with the Heavyside activation
function even if the number of hidden neurons is fixed to two and only the number of
inputs is allowed to vary from one instance to the next one. Training a single percep-
tron is, of course, polynomial as a specific instance of linear programming, although
the (convergent) perceptron algorithm might take exponential time. However, achiev-
ing optimum solutions in the presence of errors is an NP-hard problem even for the
simple perceptron as shown e.g. in [69].

People have argued that these situations are not realistic with respect to several
aspects: usually, the sigmoidal function and not the perceptron function is considered.
Moreover, good solutions instead of optimum ones would be sufficient. The num-
ber of hidden neurons in the networks is usually correlated to the number of available
training samples. Hence a couple of results try to generalize the setting to larger archi-
tectures [55, 104], sigmoidal networks [55, 74, 120], or approximate settings [6, 34]
establishing NP-hardness even for the seemingly simplest training problem within
this line, the training of a single sigmoidal neuron [121]. As a consequence of this
list of NP- results, researchers try to design or identify specific and possibly restricted
learning scenarios where polynomial bounds on the training time can be guaranteed
[26]. In addition, focusing on large margins might help for training FNNs [15]. Note
that SVM training can be written as a quadratic optimization problem with very sim-
ple constraints, such that, unlike FNNs, SVM training is polynomial. Nevertheless,
the original algorithm needs access to all training pattern. Hence alternative training
methods for large scale problems are investigated in the literature even for SVM such
as efficient online training methods or decomposition schemes [47, 52, 90].
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2.3 Learnability
It should be mentioned that error minimization often already takes the generalization
ability of the final network into account: Incorporation of statistical interpretation and
training via Bayesian inference, for example, gives (approximately) optimum values
[122]. Regularization terms may be added to the error function such that robust solu-
tions are found [17, 142]. The SVM explicitly solves a regularization task, formulating
the correctness of training data as a constraint, to name just a few examples. However,
after obtaining a small training error, we are now interested in the generalization abil-
ity of the trained networks to new examples, together with mathematical guarantees
for this property. The question occurs of how such guarantees can be stated in math-
ematical terms. There exist several different formalisms within this area. Methods of
statistical physics, for example, allow to compute learning curves of simple iterative
training rules which quantize the average learning effect after presenting a number
of examples [101, 123]. One very popular formalism for neural networks training is
offered by the notion of PAC (probably approximately correct) learnability as intro-
duced in [133] and the mathematical counterpart of uniform convergence of empirical
risks as introduced in [136].

PAC learnability states the fact that at least one learning algorithm (e.g. error min-
imization) can be found such that the probability of poor outputs of the learning al-
gorithm, i.e. networks which do not generalize to unseen examples, approaches zero
if enough training data are available. Uniform convergence of the empirical error of a
function towards the real error on all possible inputs guarantees that all training algo-
rithms which yield a small training error are PAC. In [136] uniform convergence for a
given function class is connected to the capacity of the considered function class and
concrete bounds on the training error are derived. The capacity of the function class
is thereby measured in terms of the so-called VC-dimension. Remarkably, a function
class is PAC learnable if and only if the capacity in terms of the VC dimension is
finite. Starting from these results, the in principle generalization ability of network
training can be established estimating the VC dimension of neural architectures. Dif-
ferent directions of research continue these results: The VC dimension of various
neural architectures has been estimated, in some cases based on advanced mathemat-
ical methods [117, 118, 125]. Note that the VC dimension quantizes the capacity of
the respective architecture, hence it can be used to investigate the approximation capa-
bility of networks, too [56]. Generalizations of the original setting to general outputs
and various loss functions have been derived [1, 138]. Moreover, the bounds obtained
via this general setting are tight in the limit, but they do not yet lead to useful bounds
for realistic scenarios and training sets. Hence refinements and possibilities to take
specific knowledge of the concrete setting or training algorithm into account as well
as alternative statistical estimations are a topic of ongoing research [2, 7, 65, 150].

3 Recurrent networks
Recurrent networks (RNNs) combine neurons in a possibly cyclic graph such that
time dependent dynamics can be observed, all neurons computing their output based
on the activations in the previous time step: xi(t) = σ(wt

i
x(t − 1)) for discrete time

or ẋi(t) = σ(wt

i
x(t)), respectively, for continuous time. Depending on the respec-

tive dynamic properties, RNNs are used for sequence prediction, transduction, and
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generation, as associative memory, or for computation tasks such as binding, group-
ing, or cost minimization. Training RNNs for an unknown function f for possibly
sequential data based on given training data can essentially be formulated like FNN
training: selection of the architecture, optimization of the empirical error on the given
training data, and estimation of the generalization ability on a test set. Hence the same
mathematical questions as in the case of FNNs arise for RNNs.

The temporal structure of RNNs adds further mathematical questions in particular
if RNNs are used for alternative tasks which rely on the computation capabilities and
dynamic properties of these networks. We name just a few further aspects: What is
the overall dynamic behavior of the network with respect to convergence and stability?
Can the capacity of RNNs used as associative memories be estimated? Which different
long-term behavior can be realized with a network? We will here only shortly mention
mathematical aspects of RNNs and refer the reader to the tutorial paper [59].

3.1 Dynamic behavior
Depending on the respective task, the overall dynamic behavior of an RNN is of major
importance. Many applications require that the network converges in some sense: if
used as associative memory, it should converge to a stable state; for robotics, conver-
gence to a possibly cyclic attractor might be appropriate; for control tasks, stability of
the RNN should be guaranteed. Hence stability and convergence constitute one major
issue investigated for different kinds of RNNs. Using Lyapunov functions, global con-
vergence to a stable state can be established for the classical Hopfield network which
restricts weights to a symmetric weight matrix. The stability of more general networks
as well as convergence rates is investigated e.g. in [27, 28, 103, 146]. Conditions on
the weight matrix for local stability of RNNs via linear matrix inequalities have been
established in [89, 126]. Note that training approaches can use these conditions to
design networks with appropriate dynamic behavior.

3.2 Capacity
RNNs might be used to approximate a continuous or measurable function on time
series based on given training data. With respect to this aspect, RNNs are universal
approximators on a finite time horizon in the discrete as well as the continuous sce-
nario [51, 116]. Moreover, their approximation capability as operators is investigated
e.g. in [4]. Upper bounds on the number of neurons which are sufficient to interpolate
a given finite training set can be established [55]. Related questions such as unique-
ness of weights constitute an interesting topic of research [77]. Turning from a limited
time horizon to the long-term behavior, one can on the one hand relate RNNs to clas-
sical symbolic mechanisms like Turing machines or, in restricted scenarios, definite
memory machines [61, 119]. On the other hand, their rich behavior as dynamic sys-
tems which are capable of producing stable, periodic, and chaotic behavior has been
demonstrated e.g. in [131, 143].

If RNNs are used as associative memories, the notion of capacity refers to the
number of patterns which can be stored in an appropriate RNN as stable states. This
number, of course, depends on the characteristics of the pattern. Sparse or nearly
orthogonal pattern can usually more easily be stored. In addition, this depends on the
respective RNN model which is considered [25]. Interestingly, the notion of Lyapunov
functions for specific network architectures such as Hopfield-type networks allow to
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inject optimization problems into RNNs. One classical example for this procedure has
been done with the TSP: if the weights of a Hopfield network are chosen appropriately,
the global energy minima of the Hopfield network correspond to solutions of the TSP.
Various different optimization problems can be tackled in this way: Hopfield type
networks for the TSP [33, 129], RNNs for invariant recognition of geometrical objects
[88], for graph coloring [41], or, as proposed by Jain and Wysotzki in this volume,
RNNs for solving graph isomorphisms respectively representing automorphisms of
structures via the stable states in the network.

3.3 Learning
If used for function approximation, RNN training is in principle identical to FNN
learning: the empirical error is minimized on a given training set e.g. with a gradient
descent method. Naturally, all NP-hardness results for FNN training transfer directly
to RNNs, such that difficulties can be expected in some situations. In addition, it has
been proved in [16] that gradient methods do not seem appropriate if long term de-
pendencies are to be learned: it is impossible to latch information over a long time
period. Hence the question of efficient training algorithms for RNNs is still an open
topic of research. The exponential decrease of gradient information is used for a par-
ticularly efficient gradient truncation in [3]. The approach of Schiller and Steil in this
volume investigates a different alternative for RNN training, which does not follow
the gradient but starts from an alternative formulation of RNN training as constraint
optimization problem. Interestingly, this yields linear interior weight updates.

The generalization capability of RNNs constitutes another not yet satisfactorily
solved research problem. Since the VC dimension of RNNs depends on the given
inputs [80], distribution independent PAC learnability cannot be guaranteed in prin-
ciple. However, the articles [55, 59] provide an alternative way to derive distribution
dependent bounds or to derive posterior generalization bounds, respectively. These
results justify the in principle learnability of RNNs in an appropriate sense. Unfortu-
nately, the derived bounds are far from being useful in practical scenarios. Additional
constraints on the networks might help in this setting [61].

If RNNs are used as associative memory, training algorithms can be based on
stability constraints. The contribution [144] derives a new algorithm for stochastic
Hopfield networks. Extensions to learn more complex pattern such as sequences, as
well as extensions to more complex network structures are currently investigated in
the literature [87, 145].

4 Self-organizing networks and vector quantization
Neural networks for vector quantization (VQ) comprise a broad variety of models
ranging from statistically motivated approaches to strong biologically realistic mod-
els. The latter ones should not be discussed here, we refer to the respective commu-
nity. We focus on those models which are developed for data processing. The main
task of these approaches is to describe given data in a faithful way such that the main
properties are preserved as good as possible. This properties could be the probability
density [134], the shape of data in the sense of possibly non-linear principle compo-
nent analysis (PCA) [100, 112] or visualization like multi-dimensional scaling (MDS)
[106], topology preserving mapping [141], the usual reconstruction error, the classifi-
cation error etc. For the different goals several approaches exist, whereby we have to
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differentiate according to the type of adaptation between supervised and unsupervised
learning schemes.

4.1 Unsupervised models

The goal of unsupervised VQ is to approximate the data v ∈ V ⊆ R
DV by a sub-

stantially smaller setW of reference vectors w
r

(codebook vectors). Thereby a data
vector v ∈ V is coded by the reference vector w

s(v) the norm δ =
∥
∥
v −w

s(v)

∥
∥

of which is minimum compared to all elements of W. Let A be the index set of
W, i.e. we have a unique mapping between W and A. Then we can take the cod-
ing procedure as a mapping from the input space V to A: ΨV→A : v �→ s =

argmin
r∈A (d (v,wr)) where d (v,wr) = ‖v −wr‖is based on an appropriate norm.

Usually the Euclidean norm is chosen. The crucial point in VQ is how one can find a
good codebookW. From a mathematical point of view an appropriate criterion is the
expectation value of the squared reconstruction errorE [W] =

∫
‖v −w

s
‖2 P (v) dv

where P (v) is the probability density of the data distribution of the data vectors. The
Linde-Buzo-Gray-algorithm (LBG or k-means) constitutes one basic approach [93].
Stochastic realizations as neural networks [67] use the convergence theorems from
Kushner&Clark or Ljung [95, 84]. One main aspect is the convergence improvement
by neighborhood learning as it occurs in biological neural maps. A very popular al-
gorithm is the Self-Organizing Map (SOM) introduced by Kohonen in [78]. Beside a
huge amount of models derived from the original one (for an overview see [79]), the
SOM also inspired other (neighborhood oriented) VQ schemes.

4.1.1 The Self-Organizing Map

The main feature of the SOM is the topological structure in the index set A1 and the
neighborhood learning based on it to achieve a topographic mapping. The treatment of
the simple adaptation process is mathematically very difficult [31]. Most results have
only been established for the one-dimensional case. Thereby, mathematical question
include the topics of 1.) convergence and ordering, 2.) topology preservation and 3.)
probability density matching and magnification.

Convergence and ordering: For continuous inputs Ritter and colleagues investi-
gated the stationary state and convergence properties after ordering under the assump-
tion of a continuous index set A, the results are summarized in [109]. Erwin et al.
have proved that it is impossible to associate a global potential function to SOM for
continuous inputs and studied the role of the neighborhood function [45, 46]. Thereby,
the learning is taken as Markov process [66]. An intuitive straightforward definition of
a potential function to be minimized, derived from the usual SOM update rule, leads
to a redefinition of the winning unit which now takes the neighborhood into account
[67]. Before convergence in SOM, an ordering process takes place. The ordering
conditions are investigated in [22]. For discrete index A the first proof of ordering
and convergence under certain conditions was given in [113] by Sadeghi, whereby the
SOM was considered as a Robbins-Monro-algorithm [110] and the respective differ-
ential equations are shown to be absorbing. Further ordering theorems for several,

1The elements of A are called neurons.
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more general, parameter settings are studied by Cottrell, Flanagan, Fort, Pagé and col-
leagues, verifying the almost sure convergence in dependence of the concrete choice
of the neighborhood shape and range, learning rate etc. A review of the results can be
found in [31]. Meta-stable states during SOM-learning may occur for certain config-
urations (non-vanishing learning rate) [50]. Sufficient conditions for convergence are
given in [48]. Lebesque continuous inputs are studied in [49], discrete inputs distrib-
utions in [92]. For the higher-dimensional cases results can be found in [31, 91, 114].
Depending, for instance, on grid configurations non-stable situations may occur [31].
Moreover for short range interactions instabilities may be observed in an initial or-
dered configuration [37]. The time behavior of ordering is considered in [38] based
on an analysis of the dynamical spectral density of the weight vectors.

Topology preservation: The definition of an ordered state depends on the defini-
tion of what is topographic (or topology preserving) mappingΨV→A. A mathematical
exact definition is given in [141]. For this purpose properly chosen topological spaces
in both the input space V as well as the output space A are defined. If the map Ψ and
its inverse, but now taken as mapping between the respective topological spaces, are
both continuous the SOM is called topology preserving. Several measures have been
established to judge the degree of topology preservation. Thereby, the topographic
function follows the exact definition [141]. However, the topographic function takes
much computational effort. Although not based on the mathematical exact definition,
the topographic product [10] and its derivatives [139] seem to be the best tools for
practical use [9].

Violations of topology preservation do not only arise because of convergence prob-
lems: if the lattice dimensionDA differs from the effective data dimensionDeff ≤DV

topological mismatches occur. The respective theory of meta- and instable states
is initially based on Fokker-Planck approaches [109]. Further studies also use the
Ginzburg-Landau-theory to describe the phenomena in more detail [36]. The high-
dimensional analysis was pointed out in [11] using phase diagrams.

To overcome the topological mismatch problem growing variants of SOM have
been developed [12] or input pruning was tried [21]. Structure adaptation is closely
related to the connection of SOM and PCA [35] and its non-linear extension of princi-
pal curves [63]. Ritter has shown that (in case of topology preserving mapping) SOM
can be taken as an approximation of principal curves [109].

Probability density matching and magnification: As mentioned above, the SOM
is not an optimal vector quantizer in the sense of the error E [W] [149]. Devia-
tions are due to the incorporation of neighborhood learning and topology preservation
[31, 141]. This fact leads to a different magnification of the SOM in comparison to the
usual VQ [39, 107]. Therefore, several modifications of SOM exist to achieve optimal
magnification [40] or, more generally, to control the magnification by local learning
rates according to local estimates of the data probability density [8]. In the winner
relaxing magnification control the local learning based on density estimation problem
is substituted by adding relaxing terms in the learning rule [30]. However, due to
stability problems, here only positive magnification can be achieved with increasing
instabilities if magnification approaches zero. SOM and maximum mutual informa-
tion with respect to additional knowledge (auxiliary data) is discussed in [76] using
metric adaptation to minimize the Kullback-Leibler-divergence between the auxiliary
data space and the weight vector density.
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4.1.2 Further VQ schemes

Certainly, SOM itself has been generalized to deal with various alternative scenarios
such as variants for time-series [132, 137, 147] or more general data structure [58], al-
ternative grid topologies [108]. An approach to include statistical properties into SOM
learning is given by contingency anlysis as studied in detail by Cottrell&Letremy in
this volume. For an overview of SOM extension as well as applications we refer to
[79].

Many further schemes of VQ were developed. Historically earlier but closely
related to SOM is the Elastic Net with well defined mathematical properties (conver-
gence) and biological motivation [148]. A further topographic mapping scheme is the
Generative Topographic Mapping [18], based on a constraint Gaussian mixture model,
the parameters of which are determined by a maximum likelihood procedure using a
simplified Expection-Maximum-principle (EM) procedure which is more complicate
than SOM learning. The magnification for both is not optimal in the sense of maxi-
mum entropy [19, 29]. Furthermore, problems in the convergence of the EM approach
may occur in case of outliers (see Archambeau, Lee & Verleysen in this volume).
Linsker proposed a topographic VQ network with optimal information transfer [94]
based on information theoretic learning [105]. Equiprobabilistic topographic map for-
mation based on kernel methods are extensively studied by van Hulle [134] also under
the constraint of maximum entropy [135].

Vector quantization based on potential dynamics are of great interest because of
their clear mathematical treatment, for instance based on the EM [23]. Such topo-
graphic approaches are the stochastic topographic mapping and its variants [54, 67,
135]. Thereby, the basic mathematical trick is the mean field approximation to de-
rive the EM-steps. However, the neuron lattice remains a hypercube. A fundamental
alternative is the Neural Gas (NG) or its extension the Topology Representing Net-
work. It combines the advantage of a potential dynamic with an otptimum topology
preserving mapping. The potential dynamic is according to a diffusing gas, whereby
the neighborhood range of the neurons plays the role of the virtual temperature [98].
The potential dynamic ensures convergence as well as stability. To achieve topology
preservation, the connections between the neurons are adaptively determined based on
the non-vanishing intersection of the receptive fields [97]. Moreover, the NG yields
the same magnification as the usual VQ and a control scheme can be established in
complete analogy to SOM by local learning rates [140] and winner relaxing terms, see
Claussen&Villmann in this volume.

Another type of unsupervised models is due to blind source separation or indepen-
dent component analysis [13]. The main feature is the determination of statistically
independent sources of a mixed high-dimensional signal time series using higher mo-
ments, and, in particular the kurtosis. A comprehensive overview is given in [71]. For
further unsupervised VQ methods we refer to the text book [68].

4.2 Supervised Methods

Self-organizing learning can also be used for supervised task where input-output pairs
are given and the goal is to minimize the classification. Naturally, the same questions
as for supervised feedforward and recurrent neural networks can be stated for these
models. Since the methods are based on the self-organizing paradigm, further aspects
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arise such as the question of potential functions of the dynamics or the possibility to
include neighborhood cooperation.

Popular models are the learning vector quantizers (LVQ) proposed in [79]: LVQ1,
LVQ2 and LVQ3 which try to minimize the classification error (CE). Thereby, LVQ
optimizes the class margins [32]. However, the CE does not give a potential descent
learning dynamic. Moreover, instabilities may occur [62]. A natural extension to
achieve this goal is the Generalized LVQ (GLVQ) [115] which slightly modifies the
classification task to ensure the potential property. GLVQ pushes the classification
borders near to the optimum Bayesian decision. To improve the GLVQ classification
a metric adaptation can be introduced in GLVQ thereby preserving the potential dy-
namic and including metric adaptation in the potential dynamic [62]. A combination
of relevance learning in GLVQ and neighborhood cooperation has been recently de-
veloped [60]. The neighborhood cooperation thereby reduces the problem of local
minima and accelerates the convergence.
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