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Reproducing kernels and regularization
methods in machine learning

Massimiliano Pontil*

Abstract. After a brief introduction to learning theory, we review the
elements of reproducing kernel Hilbert spaces and discuss learning algo-
rithms which work thereby. In particular, we focus on regularization-based
algorithms, among which important examples are regularization networks
and support vector machines.

1. Introduction

Over the past ten years learning theory has undergone a significant progress in
the development of learning algorithms and in their theoretical foundation. The
theory builds on concepts which combine ideas from probability and statistics,
and functional analysis. The formers are the natural tools to study the perfor-
mance of a learning algorithm. This has been formalized by the work of Vapnik
and Chervonenkis which we briefly touch in Section 2. The latter provides us
with families of function spaces where a learning algorithm comes to play. In this
paper we focus on a general class of function spaces, called reproducing kernel
Hilbert spaces (RKHS) [3]. Section 3 presents a self-contained introduction to
this subject.

Among the recent learning methods, an increasing number makes use of RKHS.
The best case is provided by the widespread support vector machine (SVM)
[24], a state-of-the art technique in Machine Learning. SVM as well as the older
regularization networks [20] are reviewed in Section 4 within the framework of
regularization-based algorithms.

2. The learning problem

The central theme of learning theory is to compute a function on the base of a
finite sample. The typical case studied is learning a real valued function (the
related binary classification problem is often treated as a special case). There
is a large literature on the subject; useful reviews are [25, 9, 24, 10, 8], and
references therein. In the following we briefly explain the problem.

We consider two sets of random variables z € X, and y € Y C IR which are
related by a probabilistic relationship. The relationship is probabilistic because,
in general, an element of X does not determine uniquely an element of Y, but
rather a probability measure on Y. This can be formalized by assuming that
an unknown probability measure p(x,y) is defined over the set X x Y. We are
provided with ezamples of this probabilistic relationship, that is with a training
set Dy, of m pairs (z;,y;) sampled in X x Y according to p(z,y). The goal is to
estimate a function f : X — Y able to predict a value y from any possible value
of x € X.

The standard way to solve the learning problem consists in defining an error
functional, which measures the average amount of a function, and then looking
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for the function with the lowest error. Let V(y, f(z)) be a loss function measur-
ing the error we make when we predict y by f(z). The expected error is defined
by

B[] = /X V. S@)play) dedy

Our desired function is the minimizer of the expected error. We denote this
function by f, to emphasize that it depends on the measure p. For example, if
V(y,f) = (f —y)? it is easy to see that f, is the regression function, f,(z) =
[y yp(y|z)dy, where p(y|z) is the conditional probability of y given .

Unfortunately, E can not be computed because the measure p is unknown. We

are only provided with the training set D,,. A natural approach is to replace
the expected error with the empirical error

m

En(f) = = 3" Vi, fla).

i=1

We then to minimize F,, in a space H, named the hypothesis space. This space
reflects our guess about where a good solution could be found. Let f,,, be a
minimizer of E,,. A main issue in the theory is to study how well f,, “imitates”
the true function f,, i.e. to estimate the generalization error: E(fn,) — E(f,).
This quantity depends on two competing factors: the number of examples and
the size or “capacity” of the hypothesis space. Let f; be the minimizer of F
within the hypothesis space 7. The generalization error can be decomposed
in two parts: the sample error, E(fm) — E(f%), and the approzimation error,
E(fu) — E(f,)- The latter depends only on H and p but not on the sampled
examples. It can be studied using tools from approximation theory. Recent
results for RKHS are discussed by Cucker and Smale [8] in the case that V is
the square loss. However there is need for more development in this direction.
The former is well developed. Its study is rooted in the theory of empirical
processes and goes back to the work of Vapnik and Chervonenkis [24] - see also
[9] for a nice summary of recent developments in this direction. The general
statement of these results is that the inequality

E(fm) — E(fn) < e(m,1/h,1/6)

holds true with a probability at least 1 — §, with § € (0,1), and € is a non-
decreasing function. The symbol h denotes a collection of parameters which
measure the size of H. Appropriate capacity quantities are defined in the theory,
‘fh]e most popular one being the VC-dimension or scale sensitive versions of it
2].
Intuitively, if the capacity of the function space in which we minimize the empir-
ical error is very large and the number of examples is small, the sample error will
be large in probability and overfitting is very likely to occur. The approximation
error, instead, decreases with the size of the hypothesis space. So, in order to
achieve good generalization, it is important to find a good trade-off between ap-
proximation error and sample error. In Section 4 we discuss regularization-based
techniques which provide a general answer to this problem.

3. Reproducing kernel Hilbert spaces

A reproducing kernel Hilbert space (RKHS) [3] is a function space associated to
a Mercer kernel.
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Definition 3..1 A function K : X x X — R is called a Mercer kernel if: (a)
K is symmetric, K(z,y) = K(y,z) for all z,y € X, (b) K is positive definite,
meaning that for all x1,...,2¢ € X, and £ > 1, the matriz with entries K (x;, x;)
is mon-negative definite.

For z € X, we define K, : X - IR as K,(t) = K(z,t). Let Hy be the space
formed by all finite linear combinations of functions K,z € X (i.e., Hp is the
span of functions K). If f,g € Hy, f(z) =Y -, a;K,, and g(z) = Zle BiKyt,,
we define the scalar product

m L

(f9)k =D aiBiK (i, t)).

i=1 j=1

The name reproducing kernel is due to the following reproducing property, which
follows immediately from the definition of the scalar product:

(f,K.)x = f(z) for every f € Hy, z € X.

We show that (-,:)k is well defined. It is easy to verify that (f,g9)x = (9, )k
and (af +bh,9)xk = a(f,9)k + b(h,g9)k. Since K is positive definite it also
follows that (f, f)x > 0. It remains to verify that (f, f)x = 0 implies f = 0.
Using the reproducing property we have

(f +aK,, f +aKm)K = (faf)K + 2a(fa Kz)K
+ (K., K,k 2af(x) + a®’K(z,z) > 0.

The choice a > 0 gives f(z) > —§K(x,x), while a < 0 gives f(z) < %K(w,w).
Then, since a can be any real number, f(x) must be zero. This argument is true
for every z € X. We conclude that f = 0.

Definition 3..2 The RKHS is the closure of space Hy with respect to the norm
induced by the scalar product, || - ||k =/ (-, ) k-

Besides the reproducing property, the RKHS enjoys few more key properties.

Proposition 3..1 Let K be a Mercer kernel and H the associated RKHS. Then,
for every z,y € X

(a) K(z,x) > 0.
(b) 1K (z,y)| < VE(z,2)\/K(y,y)-
(c) |f (@) < fllk /K (x,x) for every f € H.

Proof: (a): Note that [|K,||% = K(z,z). (b): We have K(z,y) = (K, K,)k.
The result follows by the Cauchy-Schwartz inequality. (c): We first note that
K5 = (Kg, Kp)k = K(z,2). Let f(z) = 3" a;K,,. By the reproducing
property, f(z) = (f,K;)k. The result now follows by the Cauchy-Schwartz

inequality:
[f (@) < [[fll&llKellx = [Ifllx vV K (2, 2).

We remark that it can be also shown [3] that if a Hilbert space H admits a
kernel function K : X x X — IR, such that: K, € H for every x € X and
(f,K.) = f(z), for every f € H, z € X, then K is a Mercer kernel.
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3.1. Feature space and Mercer Theorem
Let o : X = IR, forn = 1,..., N be a set of functions. For every z € X, let
®: X - R" be given by

®(z) = (p1(2),-..,on(T)).
Consider the kernel

N

K(z,t) = ®(x) - 2(t) = ) pnl(@)pn(t). (1)

n=1

K is a Mercer kernel. In fact, by definition K is symmetric and it is easy to
verity that

‘ ¢ >
Z OéiOéjK(ZIZi,ZIZj) = (Z 061(1)(371)>
ij—1 i—1

showing that K is also positive definite.
The map @ is called the feature map and the space Z = {®(z) : x € X, ||®(z)|| <
oo} the feature space.

Example 3..1 (Homogeneous polynomial kernel) Let X ¢ R"™, z =
(o, X1, ., Zn),

K(z,y) = (z-y)*
with d a positive integer and “” the scalar product in R™ . It is easy to verify
that K s of the form in Eq. (1) with ®(x) = {z%/Cd} =4, where we use

the notation ¢ = (qo,q1,---,qn), la] = Y 1o is qu = m. The feature
space is made of all the monomials in R™*' of degree d. There are (ZT;?! such

monomials.

Example 3..2 (Dishomogeneous polynomial kernel) Let X C R", a > 0,
de N,d>1:
K(z,y) = (a+z-y)% a>0.

This is the same as the above kernel if we define ©' = (\/a,z) € R and
K'(2',y") = K(z,y). The feature space consists of all monomials in R" of
degree at most d. For instance, if n = d = 2 we have

d(z) = (Va, V2axi,V2axs, 23,03,V 2x122)

If we set a = 0 we obtain the feature map corresponding to the homogeneous
polynomial kernel.

In general the number of features, N, can be infinite (see below) provided that
the series in r.h.s. of Eq. (1) converges for every z,y € X. In this case Z is
a subset of ¢2, the Hilbert space of square summable sequences. In fact, under
some general conditions on the space X any Mercer kernel can be equivalently
written in the form in Eq. (1), with N € INJ{oco}. We now discuss this fact.
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3.1.1. Integral operators

Let X be a compact metric space and £2(X) the Hilbert space of square in-
tegrable functions on X (w.r.t. a positive measure v, e.g. the Lebesgue mea-
sure). Let C(X) be the space of continuous functions on X w.r.t. the norm

Ifllcx) = sup,ex | f()]-

Definition 3..3 If K is a continuous Mercer kernel, we define the operator
L : L3(X) = L3(X) by (Li f)(z) = [ K (z,t)f(t)dt.

Theorem 3..1 (Mercer Theorem) Ly admits a system {(\,, un)}52, of eigen-
values/functions: Lrun, = Apun, n > 1, with Ay, > App1 > 0. In addition for
all z,y € X, K(z,y) = 307 Aaun(@)u,(y), where the convergence is absolute
and uniform on X x X.

The theorems say that a continuous Mercer kernel is of the form in Eq. (1) with
©Yn = VApuyn. Note that the decomposition depends on the measure v used in
£2(X) and that the basis functions u, do not need to be neither orthogonal (e.g,

in Examples 3..1—3..2 above, they are not) nor linearly independent.
The map @ is continuous too. In fact it easily follows that

12(z) — @(y)[[7: = K(2,2) + K(y,y) — 2K (z,y)
and, since K is continuous, the l.h.s. tends to zero when z tends to y.
Iff= Zle a; K, it is immediate to verify that f can be equivalently written

2

as f(x) = Yo, antin(x), with an = VAy Siny asun(a), and || fl} = 02, =
The theorem below makes this connection precise.
Theorem 3..2 If f,g € L2, with f = Y07 apupn, and g = > oo byu,, we
define (f,g) = > oo, “2tn. Then, the space

o0 00a2
HK:{f:Zanun€£12,| Z)\—"<oo}.
n=1 n=1""

is a Hilbert spaces which coincides with the RKHS H.

This different representation of the RKHS helps better understanding the prop-
erties of the functions which belong to it. The case of periodic kernels is partic-
ularly instructive.

3.2. Translation invariant and periodic kernels

Take X = [0,7] and K(z,y) = h(z — y), where h is defined on [—7, 7], it is
continuous and periodic. Since K is symmetric, h is even (h(z) = h(—z)). It
follows that the Fourier expansion of h involves only cosine functions:

o0
h(z) = ap + Z ap, COSNET

n=1

where a, = 1/m [7_h(z)cosnz, n > 1, and ag = & [7 h(z)dz. Using the

property cos(x — y) = sinz sin y + cos z cos y, we have

[o @] [o @]
K(z,y) =ao + Z @y, COSNT COSNY + Z a, sinnx sin ny.

n=1 n=1
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Now, assuming a,, > 0, we see that K is of the form in Eq. (1) with

®(z) = (Vao,y/arsinz,/a;cosz,...

s/ On sinnx, \/a, cosnx, . . .).
We have then proved:

Theorem 3..3 Let K(x,y) = h(x—vy). Then K is a Mercer kernel iff h is even
and its Fourier coefficients are non-negative.

What is the RKHS of K7 Denote the Fourier coefficients of a function f by

fo= %/OW f(z)cosnzdz, f)= %/Oﬂf(a:) sin nzdz

According to Theorem 3..2, the scalar product in the RKHS is

> c S 8
=Y Togn + fagn
n=0 ln
Periodic kernels provides an intuition about the meaning of norm || f||% as a
measure of the smoothness of function f: since A, = 0 when n goes to infinity,
components with higher frequencies are more penalized, and, thus, functions in
‘H cannot oscillate “too much”.
The analysis can be extended to X = [a,b]*. In this case we have

®(z) = {\/ansin(n - z),/a, cos(n - )}, e

where n = (n1,...,ng), and n; > 0fori =1,... k.

Periodic kernels are a special case of translation invariant kernels. The latter
are of the type K(z,t) = K(z —t) but are not necessarily periodic. The next
example is well known but clarifies this important difference.

Example 3..3 (Gaussian Kernel) Let X C R", K(x,t) = h(z — t), with

h(z) = exp(—B||z||?). We will show below that K is a Mercer kernel. If we
choose X = [0, x|, h(0) # h(r), showing that K is not periodic.

3.3. Form of the kernels

If we are given a feature map ®(z), we can immediately build a kernel by setting
K(z,y) = (®(z), ®(y)). However in many cases this feature map is unknown or
may not even exists. We then need to verify directly whether a given K is a
Mercer kernel. Here we discuss a general result which characterizes families of
positive definite functions.

Suppose Ki,... K, are some Mercer kernels. Let F' : R" — IR. Which prop-
erties of F' guarantee that F(Ky,...,K,) is also a Mercer kernel? The next
theorem by [11] provides a complete answer to this question. We first intro-
duce some new notation. Let P™ be the set of functions F' : R" — IR such
that for every £ € IN the following property is true: if Ay,..., A, are arbitrary
£ x £ positive definite matrices, then also F'(4y,...,A,) is positive definite. If

z2=(21,-.-,2n) ER™ and B = (B1,.-.,0n) € N", we set 2% = z;* -+ 28,
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Theorem 3..4 The function F : R™ — TR belongs to P™ iff F is real entire of

the form
- Y o

seN™
where ¢ > 0 for all B € IN".

We discuss few examples which show the value of this result.

Example 3..4 Let F(z) = (a+ 2)%,a > 0, d € IN. It is easy to verify that
F € P. Then, if we choose X C R" (a+ x-y)? is a Mercer kernel. If a > 0
we have the dishomogeneous polynomial kernel of degree d discussed in Example
3..2. Setting a = 0 gives the homogeneous polynomial kernel of Example 3..1.

Example 3..5 Let F(z) =e**, A > 0. F € P! since:
o0
Z iy
— nl

Again, if we choose X C R", the function exp{\z -y} is a Mercer kernel. This
analysis also shows that the feature map consists of all monomials with a scaling
factor 1/n!, being n the degree of the monomial.

The next example shows that neural networks do not implement Mercer kernels.

Example 3..6 F(z) = tanh{)\z} does not belong to P* for every choice of X €
R.

4. Learning algorithms in RKHS

The discussion at the end of Section 2 suggests that in order to achieve good
generalization it is important to find the best trade-off between sample error
and approximation error. This observation leads to the method of structural
risk minimization (SRM) and ultimately to regularization.

The idea of SRM [24] is to define a nested sequence of hypothesis spaces Hy C
H, C ... C Hp, where each space H; has finite capacity. Here we choose H;
to be a subset of a RKHS. A natural choice is H; = {f € H | [|fllx < 4:i}
with 41 < Ay < ... < Ap. Let fy,; be the minimizer of the empirical error
in H;, i = 1,...,p. Using such a nested sequence of more and more complex
hypothesis spaces, SRM consists in choosing the minimizer of the empirical error
in the space H;« for which the bound on the generalization error

E(fm,;) — E(f,) = approx. error(H;) + e(m, h;, )

is minimized. Further information on SRM can be found in [9]. Unfortunately,
the implementation of the SRM method is not practical because it requires to
look for the solution of a large number of constrained optimization problems.
An alternative approach is to search for the minimum of

m

=%Z (ir £ (22)) + I (2)
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Note that J contains both the empirical error and the norm (complexity or
smoothness) of f in the RKHS, similarly to functionals considered in regulariza-
tion theory [23]. The second term in the r.h.s. of Eq. (2) is a penalty term for
functions with high capacity. In particular, the larger the regularization param-
eter A, the smaller the norm of the solution. On the other hand the smaller A
the smaller the empirical error of the solution.

The key issue in SRM is the choice of the hypothesis space, i.e. the element
i* of the structure where the generalization error is minimized. In the case of
the functional of Eq. (2), the key issue becomes the choice of the regularization
parameter A. These two problems, as discussed in [10], are related, and the SRM
method can in principle be used to choose A [24]. In practice, however, more
practical statistical methods are used such as cross-validation, generalized cross
validation, finite prediction error, etc. - see [25] for a review.

4.1. Form of the solution
An important feature of the above regularization functional is that, indepen-
dently of the loss function V', any minimizer has the same general form

m

flz) = Z%K(l‘,l‘i)- (3)
i=1
There are different proofs of this fact which is sometimes named the representer

theorem [25]. A general approach is to reduce the minimization of 2 to a minimal
interpolation problem (see, e.g., [16]).

Lemma 4..1 The solution to the problem:

mfin{||f||K such that : f(z;) =y, i=1,...,m}

is unique and has the (not unique) form f =", a;K(z;, ).

Proof of Eq. (3): Let f,, be a minimizer of 2. Consider the minimum inter-
polation problem:

mfin{||f||K such that : f(z;) = fm(z;), i=1,...,m}.

Lemma 4..1 tells us that the solution is unique, call it f, and has the form
f =" aK(z;,z). Nowset ¢ = f, — f. By definition, g(z;) = 0 for
i = 17"'7m a‘nda thus’ V(yz:fm(mz)) = V(ylaf(wl)) Note that ||fm||%( =
11 +2(f, 9)k +lgll%- But: (f,9)x = 3210, 0i( Koy, 9)k = 32770 cug(ai) = 0.
We conclude that J(f) = J(f) + Al|gl|%, and, so, g = 0.

Eq. (3) establishes a representation of the function f as a linear combination
of kernels centered on each data point. This compact representation is of great
advantz&ge for learning. It permits to avoid working with the representation
f =>",_1 anty, which requires estimating an infinite number of parameters. In
fact, placing Eq. (3) in (2) we have

1 m m m
J = —ZV(yi,ZKijaj)-F)\ Z aiKijaj. (4)
i=1 j=1 ij=1

Now J depends on f only trough the m parameters «;.
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4.2, Regularization-based learning algorithms

We discuss few learning techniques based on the minimization of functionals of
the form (2) by specifying the loss function V.

4.2.1. Regularization Networks

Regularization networks arise from the minimization of the quadratic functional
1 m

EZ(% = f@))* + A% (5)
i=1

for a fixed X is a special form of regularization. It can be easily verified (see,
e.g., [10]) that the coefficients a; of the minimizer of (5) are the solution of the
following linear system of equations:

(G+XN)a=y (6)
where [ is the identity m X m matrix, and we have defined
)i =vi, (a)i=ai, (G)ij = K(w,z;).

There are many numerical algorithms which can be used to solve the linear
system (6). In particular, least squares algorithms are well established - see,
e.g., [22].

4.2.2. Support Vector Machines

We distinguish between real output (regression) and binary output (classifica-
tion, y € {—1,1}) problems. SVM classification corresponds to the following

loss function
Viy, f(z)) = (1 —yf(@))+ (7)
where (z); = x if x > 0 and zero otherwise. SVM regression uses the loss

V(y, f(2)) = (ly = f(2)| =€)+

The two losses share the property of being zero below a certain “scale”. For
SVM regression the mechanism is clear: if |y — f(x)]| is less than e the loss is
zero. For SVM classification case, instead, the loss is zero if yf(z) > 1. What
does this mean? Since f is a linear function, f(z) = 0 is an hyperplane in the
RKHS (passing trough the origin) and |f(x)|/||f]|x is the distance of z to the
hyperplane. Thus, the condition yf(z) > 1 says that example (z,y) lies of the
correct side of the hyperplane (positive if y = 1 and negative if y = —1) and has
a distance of at least 1/||f]|k to the hyperplane. So, the examples which have
zero loss are those which are “easy” to classify. If f separates the examples the
SVM algorithm finds, among the infinitely many separating hyperplanes, the
one with the smallest norm or, equivalently, with the largest margin® 1/||f|| k-
Another remarkable property of the SVM losses is that they lead to sparse
solutions, meaning that, usually, only a small fraction of the coefficients a; in
Eq. (3) are nonzero. The data points z; associated with the nonzero «; are
called support vectors. Those are either the points which have a positive loss or
a subset of the points that are at the “edge” between zero and positive loss?. We
note that the SVM classification technique was originally introduced by Cortes
and Vapnik [7] as a quadratic programming problems [24].

IThis notion of margin should not be confused with the margin of an example (,y), which
is defined to be yf(z).

2Tn practice, all such points — they are also called the points on the margin — have non-zero
coefficients, but one can construct special cases where this is not true.
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5. Discussion

5.1. How to choose a good kernel?

To fully take advantage of the regularization formulation above it is important
to chose a kernel which is appropriate for the problem at hand. A general state-
ment is that it is better to choose a kernel whose associated RKHS is “dense” in
the space of continuous functions, meaning that the approximation error is zero.
It is also important that the kernel depends on a small number of parameters.

The typical choice for X C IR is the gaussian kernel, K (z,t) = exp(—f||z —t|?),
with 8 > 0. This kernel works typically very well provided that the parameter
deviation f is set appropriately. This parameter as well as the regularization
parameter are treated as constants when we minimize functional in Eq. 2. Find-
ing their optimal value is the subject of model selection, a problem which is
addressed both in machine learning and statistics. The methods which usually
work well are those based on using a validation set or k—fold cross validation.
These methods are well known (see, e.g., the discussion in [25]).

5.2. Historical notes

Positive definite kernels were developed by Mercer in 1909. Subsequently, the
theory grew from the contribution of several mathematicians, among whom we
remember Bocher, Moore, Schoenberg, and, especially, Aronszajn, who gave the
first systematic treatment on the theory of RKHS in his famous 1950 paper. The
paper by Cucker and Smale [8] contains an introduction to the subject relevant
to learning theory.

The idea of using Mercer kernels in pattern recognition goes back the mid 60’s to
the work on potential functions by Aizerman et al. [1] Around the same period,
RKHS were also used, from a different perspective, in approximation theory and
statistics (see, e.g., the monograph by Wahba [25]).

Regularization theory was developed in the 60’s by the Russian school of math-
ematicians lead by Tickonov. Its application in learning was championed by
Poggio and Girosi in the late 80’s to study radial basis functions. [20]. This
framework was later extended by Evegniou et al. [10] to include SVMs.

The idea of maximum margin classifiers was introduced by Boser et al. in 1992
[4] and later refined to SVMs by Cortes and Vapnik [7]. Vapnik also extended
SVMs to regression [24]. After these works, SVMs and related kernel methods
became increasingly important and are now a main toolbox in computer science
and engineering. A substantial part of this development was driven by real ap-
plications in different fields, especially those arising in computer vision, natural
language processing, speech and sound analysis, and bioinfromatics.

5.3. Applications

We give a brief overview of few of the many applications of the learning tech-
niques discussed in the Section 4, especially SVM classification.

The first application of SVMs dealt with the problem of optical character recog-
nition (see [24] and references therein). Soon after SVMs started to be used as
the core classifier of vision systems, for example to identify faces [18], people
[19], and for appearance-based 3D object recognition [21]. In all these cases the
proposed vision systems were able to deal with objects difficult to model due to
significant variety of geometry, color, texture, and viewing conditions. At the
same time SVM established as the state of the art tool for text categorization
problems [13]. Among the more recent applications we recall those on stop word
detection in speech signals [17] and on microarray data analysis in bioinformatics
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- see, e.g., [5]. The widespread use of SVM in bioinformatics is particularly im-
pressive but also raises the question about how much speculation can influence
the diffusion of a learning method in a field where the statistical significance of
the results is often a taboo.

All the works mentioned so far used simple kernels in high dimensional vector
spaces, such as the gaussian or polynomial kernels. They provided the first indi-
cations that SVMs can deal with sparse data in high dimensional spaces. More
recent works started to address the problem of building kernels in non Euclidean
data spaces. Part of these works focus on defining data representations, formed
by features u, (), and, afterwards, show that the linear kernel in those features,
K(z,t) = ), un(®)u,(t), can be computed efficiently. This includes data such
as text documents [5], parsing trees in natural language [6], DNA sequences
[15], and so on. The data representation considered in these methods are in the
style of the bag of word representation for text documents (see, e.g., [13]) and,
therefore, the associate kernel can model only a narrow set of functions. The
contribution of these approaches seems to be mainly on feature extraction for
complex tasks rather than substantial Mercer kernel development. Other works
attempt to developed directly families of kernel functions bypassing the defini-
tion of a feature map. In particular, Haussler [12] discusses kernels for recursive
structures such as sequences and trees, and Kondor and Laffery [14] use ideas
from spectral graph theory to build kernels on graph structures. Interesting,
both studies include Euclidean spaces, in which case the proposed kernels re-
duce to the gaussian kernel. A main drawback of these works is that computing
the kernel may be highly time consuming.

5.4. Future directions

We already mentioned in Section 2 the need for more studies on the approxima-
tion error in learning theory. Assume that the target function f, belongs to a
large space F (a standard choice is the space of continuous functions). In this
setting it would be interesting to study the approximation properties of families
of RKHS which are dense in F.

A second research direction which is still mainly unexplored is the development
of Mercer kernels in non Euclidean spaces. In particular an important area is
learning in discrete structured domains. Examples are spaces of graphs, e.g.
trees or sequences. The above approximation problem is also relevant in this
context.

Finally, there is need to develop theory and methods for problems beyond the
standard classification and regression ones. For instance, there are other learning
problems which have received much less attentions: learning order relations,
multi-label classification, multiple output regression. A better understanding
and theoretical development of those cases will open the way to new applications
areas.
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