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Abstract. Real-world image processing systems frequently represent
a chain of hierarchically organized, interacting components ranging from
basic preprocessing to high-level image analysis and interpretation. Func-
tional operations such as preprocessing, feature extraction, data reduc-
tion/compression, segmentation, object recognition, image understand-
ing, and scene analysis have to be applied to different structural levels
of data complexity ranging from pixel data, local features, structure and
texture level data to objects, object arrangements, scene and context
descriptions. Neural networks, as a special kind of learning and self-
adapting data processing systems, have to offer considerable contribu-
tions to this field. Their abilities to handle noisy and high-dimensional
data, nonlinear problems, large data sets etc. have led to a wide scope of
successful applications in digital image processing.

Image processing is a challenge to neural network computation. As numerous
application domains in science and industry are facing vast, rapidly growing
amounts of digital image data, the need for advanced computer-assisted image
processing and analysis techniques increasingly moves into the focus of atten-
tion. In this context, artificial neural networks, as a special kind of learning and
self-adapting data processing systems, have to offer considerable contributions.
Their abilities to handle noisy and high-dimensional data, nonlinear problems,
large data sets etc. have lead to a wide scope of successful applications in image
processing.

Typically, real-world image processing systems can be represented by a
chain of hierarchically organized, interacting components ranging from basic
preprocessing to high-level image analysis and interpretation, where the out-
put obtained by each step serves as an input to the subsequent component.
However, complex interactions and feedback loops between the different levels
are frequently included in order to optimize the final results in the light of the
specific application. In general, the various aspects of such image processing
systems can be disentangled into two parallel threads:
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The first thread refers to the function of each component: preprocessing,
feature extraction, data reduction/compression, segmentation, object recogni-
tion, image understanding, and scene analysis. The second thread classifies the
specific kind of data adopted by each component: pixel data, local features,
structure and texture level data, objects, object arrangements, scene and con-
text descriptions.

Although, at a first glance, the growing number of applications in the field
may seem encouraging, there are still considerable unsolved problems: In par-
ticular, there is a need for continuous research emphasizing quality assessment
including critical comparative evaluation of competing image processing algo-
rithms with respect to specific constraints of given application domains. In
this context, it increasingly becomes clear that knowledge about neural net-
work theory alone is not sufficient for designing successful applications aiming
at the solution of relevant real-world problems in image processing. What is re-
quired as well is a sound knowledge of the data, i.e. the underlying application
domain. Although there may be methodological similarities, each application
requires specific careful consideration with regard to algorithmic design, quality
assessment, and optimization of each system component within the functional
image processing ‘thread’ sketched above. This challenge can only be managed
by close interdisciplinary cooperation of neural network theorists, engineers,
and computer scientists. Hence, this subject can serve as an example for lively
cross-fertilization between neural network computing and related research.

This special session is focussed on image processing based on neural net-
works as well as other advanced methods of computational intelligence. The
contributions to this session put special emphasis on real-world applications
combining original ideas and new developments with a strong theoretical back-
ground. In the following, we describe examples taken from our own research
work that illustrate the applicability of neural network computation techniques
to real-world digital image processing.

1. Image Analysis System for MRI Data of Pa-
tients with Multiple Sclerosis

Here, we present a complete digital image processing system for high-precision
computer-assisted segmentation of multispectral MRI data sets in patients with
Multiple Sclerosis which has been developed by A. W. and his group. A similar
description will be published in [16]. The system comprises several interacting
functional and structural components covering both unsupervised and super-
vised neural network learning. Therefore, it may serve as a lively example of
how the conceptual power of neural machine learning techniques can contribute
to the solution of advanced real-world image processing problems:

In the light of current scientific discussions on the clinical role of MRI for the
evaluation of white-matter disease [4], the development of flezible innovative
strategies for computer-assisted high-precision segmentation methods is a sub-
ject of topical interest in human brain imaging. Flexibility here refers to (i) the
input, (ii) the output, and (iii) the level of human intervention required in such
systems. As far as the input is concerned, the user should have the opportu-
nity of freely choosing among different MRI sequences and various combinations
thereof. As for the output, the system should not be restricted to lesion quan-
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tification alone, but should offer the potential to provide high-precision whole-
brain or tissue-specific segmentation as well, in order to account for global
brain atrophy measures, e.g. Percentage of Brain parenchyma Volume (PBV),
which have recently moved into the focus of current basic and clinical research
interest [5]. Finally, the system should offer different levels of human inter-
vention: On one hand, the development and evaluation of computer-assisted
segmentation systems can benefit from the superior image analysis capabilities
of human beings which implies a higher degree of operator interaction. On
the other hand, for large-scale clinical (e.g. multi-center) studies, however, a
reduction of human intervention may sometimes be helpful in situations where
user interaction could reduce reproducibility, i.e. could impose subjective bias
on segmentation results. Thus, the development, test, and evaluation of a seg-
mentation system aiming at the analysis of specific pathological changes in MS
is a challenge that requires considerable effort w.r.t. integrating substantial hu-
man expertise in order to optimize computer-assisted decision support. Here
we present a neural network-based segmentation system for multispectral MRI
data sets of the human brain that has been specifically designed in order to
provide a high degree of flexibility with regard to all three aspects mentioned
above.

1.1. Methods

Data: Six patients with relapsing-remitting MS and EDSS [7] scores between
1.0 and 3.5 were included in the study. Image data were obtained on a 1.5T
MRI scanner General Electric, Signa™ employing a standardized MRI sequence
protocol including T1 and T2 weighted, Proton Density (PD) weighted, Fluid-
attenuated Inversion-Recovery (FLAIR), and Magnetization Transfer (MT) se-
quences in axial slice orientation. The T1 and MT sequences were repeated
after intravenous contrast agent administration. Total scanning time was 27.4
min.

Image Analysis: The conceptual basis of single components of our system has
been described in [17]. Here, we want to put special emphasis on the functional
interplay between the various components in so far as it is relevant to brain
segmentation in MS. An overview of the segmentation system is shown in fig. 1.
Thick-lined boxes indicate interactive steps. Boxes with rounded corners refer
to segmentation results. After co-registration and gray level rescaling (1) of the
input data, the intracranial cavity (ICC) is pre-segmented interactively. For
the data presented here, this step was performed manually by human expert
readers, however, (semi-)automatic techniques may be used as well, such as the
methods developed by our group [15]. In a second step, a training data set is
obtained manually comprising small reference regions labeled as “Gray Matter
(GM)”?, “White Matter (WM)”, “Cerebrospinal Fluid (CSF)”, “White Matter
Lesion (WML)”, and a “Residual Class (RC)”, representing other tissues such
as meninges or larger vessels (2). Subsequently, gray level shift effects induced
by magnetic field inhomogeneities and cross-talk effects can be corrected using
the training data and the ICC masks (3, 4). For this purpose, we have devel-
oped a specific bootstrap algorithm based on iterative improvement of a pre-
liminary neural network tissue classification, which will be published elsewhere.
After these preprocessing steps, each voxel within the ICC mask is assigned to
a feature vector x representing its MRI signal intensity spectrum. This set
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Figure 1: The image analysis system for high-precision segmentation of multi-
spectral MRI data in patients with multiple sclerosis.

of feature vectors is partitioned into N clusters by unsupervised learning (5)
based on minimal free vector quantization [17]. The resulting codebook can
either be used for interactive visual tissue type classification based on cluster
assignment maps (6), or automatic supervised segmentation can be obtained by
subsequent training of a Generalized Radial-Basis Functions- (GRBF-) neural
network (10), see [17].

For the interactive visual classification of cluster assignment maps, we devel-
oped a software system named CASCADE (Computer-Assisted Cluster Assign-
ment Decision Environment) which enables quick and efficient screening of clus-
ter assignment maps and underlying MRI data. Here, each feature vector x is
uniquely attributed to its closest codebook vector w;(x) according to a mini-
mal distance criterion in the gray level feature space, and corresponding cluster
assignment maps (6) are constructed for visual inspection. In a second step,
each cluster j belonging to codebook vector w; is interactively assigned to
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Figure 2: (a) Axial slice (FLAIR MRI sequence) of a brain containing WML;
(b) WML classification based on interactive cluster assignment using the CAS-
CADE system; (c) supervised automatic WML classification using a GRBF
neural network; (d) CSF segmentation by GRBF neural network classification.
For explanation, see text.

a specific tissue class A € {0,...,m} by a human expert reader. Finally, all
the clusters assigned to each specific tissue class A are collected and merged
yielding a composite cluster assignment map (7) representing the final segmen-
tation result. Based on this tissue assignment, the isolated or merged codebook
vectors representing prototypical gray level spectra may be plotted for further
visual analysis and interpretation (9, 14). Finally, segmentation results may
be used for tissue-specific volume measurements (15), where spatial smooth-
ing techniques or geometric contingency thresholding (8) can be employed as
optional post-processing steps. An example for WML segmentation results is
presented in fig. 2b.

Alternatively, for automatic supervised classification by a GRBF neural
network (10) the training data from step (2) and the resulting codebook from
step (5) can be re-cycled [17]. Based on the respective tissue segmentation,
the WML volume can be quantified as well (11, 13 — see fig. 2c). Furthermore,
the GRBF segmentation approach can be used for PBV calculation based on
automatic CSF identification (12 — see fig. 2d).

Table 1: Statistical analysis of WML and PBV quantification methods
w.r.t. inter-observer agreement (univariate F-test, N = 6). The method yield-
ing better results, i.e. higher inter-observer agreement is printed in bold face
for each pairwise comparison.

Method A Method B p-value
WML segmentation
Region Growing GRBF 0.075
Region Growing CASCADE 0.029
GRBF CASCADE 0.027

PBV calculation
GRBF Angle Image 0.003
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1.2. Evaluation and Results

In order to perform a thorough quantitative evaluation of the described pre-
processing and segmentation procedures w.r.t. all data processing steps in-
volving human interaction, WML quantification and PBV computation were
performed based on (i) interactive definition of training data sets by two differ-
ent observers independently for supervised GRBF classification of WML and
PBV computation, respectively, (ii) interactive reference region contour trac-
ing for threshold definition of an observer-guided region growing technique [14]
serving as a reference method, by two different observers independently, (iii)
interactive cluster assignment using the CASCADE system by two different
observers independently, and (iv) interactive threshold definition for the angle
image method [5] serving as a reference method for PBV computation, by two
different observers independently. The computation of inter-observer agree-
ment levels was performed according to the statistical guidelines of the British
Standards Institution [1].

In order to rank the methods w.r.t. their segmentation quality, the inter-
observer agreements of CASCADE and GRBF neural network segmentation
were compared to region growing, based on a univariate F-test. From the re-
sults presented in tab. 1, it can be concluded that (i) the mean inter-observer
agreement in cluster assignment using the CASCADE segmentation procedure
is higher than in both region growing (p = 0.029) and GRBF neural network
classification (p = 0.027), i.e. there is a significant method effect; (ii) the mean
inter-observer agreement in GRBF neural network classification is higher than
in threshold-based region growing. However, statistical analysis reveals only a
method effect of reduced significance for the comparison of GRBF neural net-
work segmentation and region growing (p = 0.075). In conclusion, interactive
cluster assignment using the CASCADE segmentation system performs signif-
icantly best in a comparison of the three methods, whereas supervised GRBF
neural network classification is slightly better than conventional region growing
serving as a reference method for WML quantification. For PBV computation,
our GRBF neural network method outperforms the reference angle image tech-
nique w.r.t. inter-observer agreement at a significance level of p = 0.003.

1.3. Discussion

For WML quantification in MS we obtain the best segmentation results us-
ing the CASCADE approach, where human expert knowledge is incorporated
at a “cluster level” instead of a “pixel level”, i.e. at an advanced, abstract
level of knowledge representation within the pattern recognition process. We
conjecture that this observation could be of particular interest in the light of
ongoing discussions on “domain knowledge data fusion for decision support”
in the machine learning community. Our study shows that computer-assisted
image analysis using semi-automatic neural network segmentation outperforms
conventional threshold-based techniques w.r.t. inter-observer agreement levels
for both WML quantification and PBV calculation in MRI data of MS pa-
tients. At the same time, our segmentation system allows the radiologist and
neuro-scientist to choose freely among different input MRI sequences and var-
ious combinations thereof in order to systematically explore their contribution
to brain imaging in MS.
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2. Adaptive Image Compression within High-
Throughput Screening using Auto-Associa-
tive Feed-Forward Networks

2.1. Motivation

Many High-Throughput Screening (HTS) methods [6] being used in almost all
scientific fields, from life science to engineering, often lead to an immense quan-
tity of data. Besides the actual processing of these data, which depends on the
specific task of course, there is usually a problem of transmitting and storing
these data. Especially when dealing with image based methods, existing prob-
lems of data handling may limit the throughput of the entire system. Assuming
the number of images and their spatial and/or temporal resolution cannot be
further optimized anymore, image compression algorithms [9], [13], [8] are fre-
quently applied. As long as there are no strong demands for the details of
image content on pixel level, lossy compression methods, i.e. JPEG (Joint
Photographic Experts Group) [10], are appropriate. These methods are fast,
rather effective and scalable. Thats why JPEG is the standard image format
in the internet. On the other hand, there are lossless compression algorithms,
i.e. LZW (Lempel-Ziv Welch) Compression or JPEG2000 [11], where the im-
age is completely restored after compression/decompression. Depending on the
image contents, these algorithms frequently are not as effective as many lossy
compression methods, since information contained in the image is just rear-
ranged or transformed but not reduced. For details see [13]. The dualism of
lossy and lossless compression seems to fix a dilemma: either a high compression
ratio with loss of possibly important information or keeping all information at a
poor compression ratio. The reason for this dilemma is that all these methods
process all image content the same way. Using an adaptive procedure which
respects the image content can be built up using auto-associative feed-forward
neural networks (Bottleneck neural networks) as shown in fig. 2.

2.2. Description of the Algorithm

This technology is not new. First applications date back to the late 80s/early
90s [3], [2], [12], but we can now notice a revival against the background of
increasing HTS applications. During the learning phase of the neural network,
relatively small blocks, usually 8x8 pixels, of images with typical content are
presented to the net. At the end the auto-associative net is able to reflect the
input data at its output with only a very small reconstruction error. Since the
hidden layer is typically smaller than input/output layers, a compression (from
input to hidden layer) and the inverse decompression (from hidden to output
layer) is performed by the neural network. When the network is recalled now
with previously unknown images respectively their blocks, the activation of the
hidden layer, which was from the neural networks point of view just an inter-
mediate result, is considered as the compressed image block. In order to restore
the image, all compressed blocks are processed by the output layer of the net-
work which effectively performs the decompression, and are reassembled in the
correct order to form the reconstructed image. This procedure has been applied
as a general purpose method for image compression with discouraging results.
However, it has proven to work very well in those cases, where all images to
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Figure 3: The original image is divided into equally sized blocks (b, - b,). All
blocks are consecutively transformed into an input vector of length n = b, - b,,.
The hidden layer is built up of m < n neurons (m/n denotes the compression
ratio) and contains the compressed image block.

be processed contain similar information, i.e. always a typical basic structure
with small but important differences which would be equalized by conventional
(non-adaptive) lossy compression methods. Once the neural network is trained
with a set of typical and similar images, it can be used without retraining as
long as the images do not change their basic features. Since this neural solu-
tion is rather slow, even in the recall phase, compared to the above mentioned
compression methods, it is not suitable for on-line compression/decompression.
However, in all applications with no hard schedule, such as storing/archiving
images for later processing or occasional reference, it is a promising alternative
to conventional compression methods.
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