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Abstract. An incremental, nonparametric probability estimation pro-
cedure using a variation of the Fuzzy ARTMAP (FAM) neural network
is introduced. The resulted network, called Fuzzy ARTMAP with Rel-
evance factor (FAMR), uses a relevance factor assigned to each sample
pair, proportional to the importance of that pair during the learning
phase. We prove that our probability estimator is correct. The FAMR
can be used both as a classifier and as a probability estimator.

1 Introduction

In the context of supervised training, incremental learning means learning each
input-output sample pair, without keeping it for subsequent processing.

Many pattern recognition applications require an estimate of the posterior
probability P (C|a), where C is a class index and a is an input pattern. This
task also allows classification because one can select the class C with maximum
conditional probability.

This paper will discuss the probability estimation from data samples in
supervised incremental learning systems based on Fuzzy ARTMAP (FAM) ar-
chitectures. Such procedures are presented in [3, 7, 5, 6].

This paper introduces a variation of the probability estimation phase of
FAM and identify the resulted network as FAMR to distinguish it from the
original architecture. FAMR is an incremental learning system for general
classification and nonparametric estimation of the probability that an input
belongs to a given class. Each training pair has a relevance factor assigned
to it. This factor is proportional to the importance of that pair during the
learning phase. Using a relevance factor adds more flexibility to the training
phase, allowing ranking of sample pairs according to the confidence we have in
the information source. The training sequence may include sample pairs from
sources with different levels of noise.

In Section 2, we briefly discuss how the FAM architecture was used for
probability estimation. Section 3 introduces our modification of the FAM algo-
rithm. In Section 4 we present the experimental results and finally, in Section
5 we conclude with some closing remarks.
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2 Probability estimation in FAM

A detailed description of the FAM probability estimation can be found in [3].
We present here only the necessary details.

FAM includes a pair of ART modules (ARTa and ARTb) that create sta-
ble recognition categories in response to arbitrary sequences of input patterns.
These modules are linked by an inter-ART module called Mapfield whose pur-
pose is to determine whether the correct mapping has been established from
inputs to outputs or not.

During learning, FAM updates its Mapfield weights to estimate the proba-
bility that an input belongs to a given output class: the strength of the weight
projecting from the selected ARTa category to the correct ARTb category is
increased, while the strength of the weights to other ARTb categories are de-
creased. A Mapfield vigilance parameter ρab calibrates the degree of predictive
mismatch, necessary to trigger the search for a different ARTa category. If the
weight projecting from the active ARTa category through the Mapfield to the
active ARTb category is smaller than ρab (vigilance test), the system responds
to the unexpected outcome through the so-called match tracking, which triggers
an ARTa search for a new input category.

Once an ARTa category J is chosen, whose prediction of the correct ARTb

category is strong enough, match tracking is disengaged, and the network is
said to be in a state of resonance. In this case, Mapfield learns by updating
the weights of associations between ARTa and ARTb categories. According to
this updating scheme, weight wab

jk is a non-decreasing function of the frequency
of associations between the jth ARTa category and the kth ARTb category
during the training phase.

This last feature is made more explicit in PROBART [7], where Mapfield
weight wab

jk is exactly the frequency of associations between the jth ARTa

category and the kth ARTb category. Therefore, wab
jk/|wab

j | is the empirical
estimate of the posterior probability P (k|j) that ARTa category j is associated
to ARTb category k.

3 The FAMR Algorithm

Let us consider a sequence of independent experiments according to the finite
probability distribution P (a1), . . . , P (an), where P (ai) > 0 is the probability
of outcome ai,

∑n
i=1 P (ai) = 1. These objective probabilities are not known

and will be estimated at each step based on the previous observations. A
criterion for a qualitative differentiation of the experiments is represented by the
relevance associated to each experiment. The relevance qt is a real positive finite
number directly proportional to the importance of the experiment considered
at step t. This number may be either of objective or subjective nature. The
following estimation procedure (defined in [1]) makes use both of the results
and the relevances of the present and previous experiments.

The subjective probability of outcome ai (i = 1, . . . , n) at step t (t = 1, 2, . . .)
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is given by:
wt(ai) = wt−1(ai) + At (δt(ai) − wt−1(ai)) (1)

where: if at step t we get outcome aj , δt(aj) = 1 and δt(ai) = 0 for j �= i;
w0(ai) > 0 is the initial subjective probability,

∑n
i=1 w0(ai) = 1; q0 is the initial

relevance, Qt =
∑t

s=0 qs, At = qt/Qt.

Theorem 1. wt(ai)
t→ P (ai) in probability iff Qt

t→ ∞.

For some additional conditions imposed to qt, the direct result can be
strengthened:

Theorem 2. If q0 ∈ [0, b], qt ∈ [a, b] (t = 1, 2, . . .), for two real values 0 < a ≤
b < ∞, then wt(ai)

t→ P (ai) with probability one.

In other words, an observer who intends to learn objective probabilities
from examples has to have sufficient confidence in the results of the experiences.
Theorem 1 is from [1], whereas Theorem 2 is new.

Mapfield weight wab
jk can be considered an estimate of the posterior proba-

bility P (k|j). This enables us to use formula (1) to update the weights wab
jk:

w
ab(new)
Jk =




w
ab(old)
jk if j �= J

w
ab(old)
JK + At(1 − w

ab(old)
JK )

w
ab(old)
Jk (1 − At) if k �= K

(2)

Is wab
jk a good estimate of P (Ib|Ia), where Ia and Ib are intervals based

around input pattern a, respectively output pattern b? Feedback via match
tracking alters this estimation (see [7]). One way to avoid this problem is to
eliminate match tracking.

If the conditions in Theorem 2 are true and match tracking is not used
then, for each ARTa category j (j = 1, . . . , Na) and each ARTb category k
(k = 1, . . . , Nb), we have:

wab
jk→P (k|j) with probability one. (3)

Eliminating match tracking is not always convenient, because match track-
ing controls category proliferation in ARTa. Meanwhile, it is difficult to say
something about this probability approximation in the presence of match track-
ing, since in this case wab

jk is not necessarily a good estimate of the posterior
probability with respect to the already processed data. However, in our exper-
iments, match tracking has not significantly altered probability estimation.

Let Q be the vector [Q1 . . . QNa ]. Na and Nb are the number of categories
in ARTa, respectively ARTa, initialized with 0. For incremental learning of
one training pair, the new Mapfield algorithm is given in Algorithm 1.

Since we initialize the weights wab
jk with 1/Nb and not with 1, we have to

modify the vigilance test. The new test is:

Nb wab
JK ≥ ρab (4)
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Step 1. Accept vector pair (a,b) with relevance factor q.
Step 2. If necessary, create category K in ARTb:

Nb = Nb + 1
K = Nb

if Nb > 1 then
wab

jK = q0
NbQj

for j = 1, . . . , Na {append new component to wab
j }

wab
jk = wab

jk − wab
jK

Nb−1 for k = 1, . . . , K − 1; j = 1, . . .Na {normalize}
endif

Step 3. If necessary, create category J in ARTa:
Na = Na + 1
J = Na

QJ = q0 {append new component to Q}
wab

Jk = 1/Nb for k = 1, . . . , Nb {append new line to wab}
Step 4. J, K are winners or new added nodes

if vigilance test (4) is passed then
{learn in Mapfield}
QJ = QJ + q
wab

JK = wab
JK + q

QJ
(1 − wab

JK)

wab
Jk = wab

Jk

(
1 − q

QJ

)
for k = 1, . . . , Nb, k �= K

else
perform match tracking and restart from step 3

endif

Algorithm 1: One iteration in the new Mapfield algorithm.

The rest of the FAM mechanism remains unchanged. The resulted algo-
rithm will be called FAMR (Fuzzy ARTMAP with Relevance factor).

Using a relevance factor in FAMR is not equivalent to repeatedly presenting
a training sample to the system: the variation of wab

JK values is finer than in
the case of repeating the presentation of the training pair, since the relevance
factor can be a real value. Second, learning is faster, because we can learn in
one step instead of repeatedly learning the same pair.

How to assign a relevance factor to a training sample? An answer could
be in ranking the sample pairs according to the confidence we have in the
information source. We have in mind at least two application areas for such
learning systems with relevance factor.

1. When training neural networks with noisy data, we can assign a relevance
factor inverse proportional to the noise.

2. Assuming we can generate training pairs close to the decision boundary,
we could assign a relative higher relevance factor to this samples. However,
there are experimental results reported [4] showing that choosing examples
from the boundary area does not necessarily conduct to better classification
performances. That remains an open area for further investigations.
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4 Experimental Results

A suite of experiments were performed to test the FAMR’s aptitude for proba-
bility estimation and classification. Only incremental learning was used, even if
the network is able to improve its performance using off-line processing, when
the training set is reprocessed. The classification was made based on the prob-
ability estimation by hard-decision: an input pattern belongs to the category
with maximum posterior probability. The performance of probability estimator
was quantified by the average Brier score. This score measures the quality of
probability estimation by comparing it to the objective conditional probability
[3].

I. Circle-in-the-square. This problem requires a system to identify which
points of a square lie inside and which lie outside a circle whose area equals
half that of the square. We have two classes of points: points located inside
the circle and points located outside the circle. For computing the Brier score,
1000000 evenly spaced points were generated inside the square. The relevance
factor was set here to 1.

The training set contained 1000, 10000, and 100000 patterns. The test set
consisted of 100000 patterns in each case. As expected, the recognition rate
and the Brier score increased with the number of training patterns from an
average value of 92.995% and 0.9327 respectively (for 1000 training patterns)
to 98.101% and 0.9810 (for 100000 training patterns). Compared to the results
reported in [2] we have obtained on an average better performances: less or
equal number of ARTa categories, better Brier score and recognition rate.

II. Noisy circle-in-the-square. A modified version of the circle-in-the-
square problem was used in order to test the effectiveness of the relevance
factor. We considered three data sources (called A, B, C), each of them pro-
ducing the same number of training samples. Each source has an associated
probability (pA, pB, and pC respectively) of producing wrong associations. We
took (pA, pB, pC) = (0, 0.2, 0.35). First, the relevance factor qt was set to 1, for
each information source. The average Brier score obtained for 6 different sets
of data was 0.89567. Subsequently, we considered different relevance factors,
in accordance to the noise level of the three sources: (qA, qB, qC) = (100, 10, 1),
where qX is the relevance factor associated with the data source X . The av-
erage Brier score obtained for 6 different sets of data was 0.91895, superior to
the the previous case. The total number of training patterns was 10000 for
each experiment and the Brier score was computed for 10000 points evenly
distributed inside the square.

Correlating the relevance factors to the degree of confidence in each data
source resulted in a better performance of the system. The relatively small
value of the average Brier score is explained by the presence of noise.

In order to prove the advantage of taking into account supplementary
data sources, though these sources were noisy, we developed another exper-
iment. This experiment proved more relevant when the number of avail-
able correct training samples was relatively small. First, we have generated
1000 associations using three data sources (A, B, C), each with the same
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probability of producing training patterns, (pA, pB, pC) = (0, 0.2, 0.35), and
(qA, qB, qC) = (100, 10, 1). The average Brier score for different training sets
was 0.88370 for 1000 training patterns, above 0.88033, the value obtained when
using only the 1000/3 correct samples from source A to train the FAMR.

5 Conclusions

The Mapfield algorithm developed here expands the range of FAM applications
by allowing to assign a relevance factor to each training pair. The FAMR prob-
ability estimation is simple and converges with probability one to the posterior
probability. Compared to the FAM probability estimator, FAMR shows similar
or better performances with respect to the Brier score, recognition rate, and
number of generated nodes. The true benefits of using FAMR may come from
using a relevance factor assigned to the training samples.
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