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Abstract. This paper considers the general problem of function es-
timation with a modular approach of neural computing. We propose
to use functionally independent subnetworks to learn complex functions.
Thus, function approximation is decomposed and amounts to estimate
different elementary sub-functions rather than the whole function with a
single network. This modular decomposition is a way to introduce some a
priori knowledge in neural estimation. Functionally independent subnet-
works are obtained with a bidirectional learning scheme. Implemented
with self-organizing maps, the modular approach has been applied to a
robot control problem, a robot positioning task.

1 Introduction

Artificial Neural Networks (ANN) have proven to be very good function es-
timators. Unfortunately, in the case of real-world complex functions, their
implementation using a typical ANN is not trivial. This is due to the high di-
mensionality of the problem: learning is not easy, convergence not guaranteed,
and response time may become prohibitive. We propose a modular approach
to address this problem. Modular neural systems are considered in terms of
collections of subnetwork modules. A review of the different concepts of mod-
ularity is proposed in [3]. Two approaches for generating such networks are
distinguished.

The first approach is based on algorithms that can actually generate net-
works and subnetworks, topologies, connections, and weights to satisfy specific
constraints. This approach encloses networks of networks. A neural system is
then viewed as a hierarchy of networks. Each unit from the high-level network
is associated to a subnetwork to subdivide the problem to reach an adequate
fineness. This structure is generally well suited to simple decompositions and
solve typically classification problems.

The second approach includes networks with functionally independent sub-
networks, where each subnetwork is designed to have specific functions, com-
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munication, and adaptation characteristics. This approach includes two types
of decomposition, the mizture of experts approach [5] and functionally inde-
pendent subnetworks.

Mixtures of experts are particularly popular, and consist in using several
modules in parallel and in choosing the best fit for a given environment. A
similar concept is developed in [4]. This architecture is based on multiple pairs
of forward and inverse models, where each pair is learned for a given control
task . Simultaneously, "how to select” the set of appropriate models for a
given environnement is also learned. This type of organization does not accept
a priori information.

On the contrary, functionally independent subnetworks are compatible with
prior knowledge about the function to learn. This modular approach of neural
computing amounts to decompose the function and to estimate different ele-
mentary sub-functions. As an illustration, a bidirectional learning architectures
is proposed in [6]. This concept allows any complex function to be decomposed
into subfunctions and to build internal representations.

We adopted this modular architecture for its proven robustness [2] and
its capabilities to integrate a priori knowledge. The modular architecture is
implemented with Self-Organizing Maps (SOM) neural networks associated to
Linear Local Maps (LLM). Each module is then an independent SOM-LLM
network.

In Section 2, we describe a modular bidirectional learning principle based
on SOM-LLM. Section 3 gives a formulation of the robot control problem and
validates the modular learning for that application. Section 4 reports some
of our simulations. Finally, Section 5 summarizes the paper and gives some
thoughts about future studies.

2 Modular Neural Learning

In modular learning, the problem is the estimation of a transformation f be-
tween two spaces, X € R” and ) € R™ :

f: X —Y, yr="£f(xp). (1)

Each neural decomposition is associated to a given application. As an
example, we will expose the general case of a sequential decomposition where
each module is composed of a SOM-LLM neural network. In a sequential neural
decomposition, the problem is decomposed in two serial modules A and B, as
represented by Figure 1. Decomposing any function or transformation in two
serial modules undeniably leads to estimate an internal space. Problems appear
with supervised modules and when there are no available data to supervise the
two learning processes.

To overcome the problem, a bidirectional learning scheme is implemented
by introducing a new module in the architecture. In Figure 1, module C is
associated to module B. This new module takes its inputs from the output
space ). While module A gives an estimation z‘,;1 of the internal representation
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Figure 1: A sequential bidirectional learning architecture

from the input space X, module C delivers another estimation of the internal
representation, zkc, from the output space ). Both estimations, sz and z?, of
the internal representation are used to define error signals to supervise module
A and module C. The estimation zﬁ serves as input to module B to deliver the
global estimation . Stability and convergence of this modular architecture is

analyzed in [1].

3 Application to robot control

3.1 Context

Our application consists in the visual servoing of a three-degrees-of-freedom
robot-arm in its 3-D space. An active vision scheme is used as feedback: two
cameras mounted on a four-degrees-of-freedom robotic head follow the robot’s
end-effector without necessarily being centered. The two cameras are controlled
separately. In the following experiments, each camera independently rotates
along both pan and tilt axes.

The two cameras define the visual feature space, V € R*. At each iteration
k, the image processing system issues the robot’s end-effector position vy € V
and the target position d; € V.

The visual features are function of the orientations of the image planes,
thus of the joint angle articulations ¢, € ® of the robotic head. ® € R* is the
head joint angle space.

Considering ® € R? as the robot manipulator joint angle space and 8, € ©,
the joint angles vector, we can define the forward kinematic transformation f:

£f:0 —V, vi, =1(0r, ;). (2)

The robot’s end-effector v is a function of the angular joint value 0y and
a function of the cameras’ orientation ¢,.

The robot control consists in computing its joint angle corrections from
image measurements and in canceling an error signal in the visual feature space.
This control is fulfilled by estimating the inverse f~! of the aforementioned
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Figure 2: The principle of visual ser-

voing Figure 3: The neural responses for

estimating the robot’s joint angles

transformation with learning techniques. It is referred to as adaptive visual
servoing.

3.2 Robot-Vision Modular Learning

The decomposition is now applied to estimate the inverse of the kinematic
transformation defined in (2). Robot functions are typically complex, multidi-
mensional and highly nonlinear. We propose to use prior knowledge to reduce
the complexity of the transformation into sub-functions. A sequential decom-
position is appropriate because it allows the estimation of an internal space
with an objective representation: the space of head joint angle for centered
visual feagures.

Let qASk be the particular camera configuration that centers a point in 3-D
space. A point is considered as centered when its image appears at the center

of the image plane for both cameras. (ﬁf is unique for a given point in the 3-D
space and can thus be used in the decomposition of f~'. Any non-centered
point in the 3-D space, defined in the sensor space (the input space of the
neural network) by vectors v and ¢;,, respectively the visual features and the
camera configuration, can be represented by a centered camera configuration

J)kc, a vector of smaller dimension.

The estimation of this vector is used to build an accurate robot controller.
We propose to use the sequential decomposition presented in Figure 1 to build
an internal space which is a representation of the image coordinates with cen-
tered cameras.

In this architecture, each module is a SOM-LLM neural network. The
rule of module A is to bring any non-centered point defined by the couple of
vectors vy and ¢, into the space of the centered camera configuration, e.g., to

~C
estimate the camera configuration ¢, that will center it. Module C returns
another estimate of the centered joint angles and the difference between both
estimates is used as a signal error to adapt the weights of module A and C.
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Module B takes the estimated signal issued from Module A to provide 6, the
angular joint value of the robot-arm.

4 Results

Using an active vision system highly complicates the control problem. Indeed,
the three degrees of freedom defining the robot function are complemented with
the four degrees of freedom of the active vision sensor. In this set of simulations,
we compare the performances of a single SOM-LLM to those of the proposed
bidirectional modular learning scheme with approximately the same number of
neurons.

The single SOM-LLM controller is a 3-D map of 12x9x12 = 1296 neurons.
The six inputs of this map are the visual features extended with the cameras’
orientations, i.e. vector [ v ¢, |7, and its desired outputs remain the robot-
arm joint angles. In the bidirectional architecture, module A is composed of
three 1-D maps each of size 12x1x1. Modules B and C are both 3-D maps of
size 9x6x9. Thus, with 1008 neurons, the global modular architecture uses a
number of neurons close to this of the single SOM-LLM.

The curves in Figure 3 show the better learning performances of the mod-
ular approach. The responses of the neural modular system are also evaluated
by comparing the resulting 3-D end-effector positions to the desired position.
The distance between these two positions is represented in Table 1 for the bidi-
rectional modular architecture and a single SOM-LLM. The control loop using
the bidirectional modular architecture results in positioning the robot’s end-
effector with a precision of 1.7 mm in the 3-D space. The modular architecture
is thus favorably compared.

The single SOM-LLM suffers from two essential drawbacks: the difficult
deployment of the 6-D input map, and the convergence of the learning algo-
rithm. The modular approach overcomes these difficulties with its objective
and coherent decomposition of the complex problem in subproblems.

The use of a modular system allows individual modules to participate in
motor learning without affecting the motor behaviors already learned by other
modules. Such modularity can therefore speed up motor learning while retain-
ing previously learned behaviors.

Controller Positioning error in the 3-D space in mean (mm)

X (max.) Y (max.) Z (max.)
SOM-LLM | 6.536 (33.044) 14.178 (143.869) 13.643 (71.065)

Bidirectional | 1.410 (9.992) 0.469 (4.038) 0.742 (7.785)

Table 1: The precision in positioning tasks with oriented cameras over a set of
20 simulations (80000 learning data and 10000 targets to reach)
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5 Summary and conclusion

In this paper, we propose functionally independent subnetworks, based on a
bidirectional learning scheme, to learn complex functions. The problem is
decomposed and amounts to estimate elementary sub-functions with SOM-
LLM modules. As an example, the inverse kinematic of a robot transformation
is decomposed and learned. The resulting estimation serves to control a robot
in a positioning task. An image-based visual servoing robot controller was
designed, implemented, and validated. The results show that the modular
approach ensures the control task with a better precision than a single neural
network.

One important advantage of the proposed approach is that the modules are
functionally independent and that they can learn without affecting the weights
of other modules. Thus, a module is autonomous and, if decomposition is
objective, a module can be reused. In our robot application, modules A or
C can be reused in order to control the head and to center the target in the
images.

Our perspectives concern the development of a more sophisticated active
vision scheme which will clearly result in better performances for the tracking
task.

References

[1] Jean-Luc Buessler, Jean-Philippe Urban, and Julien Gresser. Additive
composition of supervised self-organized maps. Neural Processing Letters,
15(1):9-20, 2002.

[2] J.L. Buessler, R. Kara, P. Wira, H. Kihl, and J.P. Urban. Multiple self-
organizing maps to facilitate the learning of visuo-motor correlations. In
IEEE International Conference on Systems Man and Cybernetics, volume 3,
pages 470-475, Tokyo, Japan, 1999. IEEE Press.

[3] T. Caelli, L. Guan, and W. Wen. Modularity in neural computing. Proceed-
ings of the IEEE, Special Issue on Computational Intelligence, 87(9):1497—
1518, 1999.

[4] Masahiko Haruno, Daniel M. Wolpert, and Mitsuo Kawato. Mosaic model
for sensorimotor learning and control. Neural Computation, 13(10):2201-
2220, 2001.

[5] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E.
Hinton. Adaptive mixtures of local experts. Neural Computation, 3(1):79-
87, 1991.

[6] H. Miyamoto, S. Schaal, F. Gandolfo, H. Gomi, Y. Koike, R. Osu,
E. Nakano, Y. Wada, and M. Kawato. A kendama learning robot based on
bi-directional theory. Neural Networks, 9(8):1281-1302, 1996.





