ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 107-112

An Associative Memory for the Automorphism
Group of Structures

Brijnesh J. Jain, Fritz Wysotzki
Technical University Berlin, Computer Science Department,

Franklinstr. 28/29, 10587 Berlin, Germany

Abstract. We present an associative memory, which memorizes the
automorphisms of any reducible labeled structure. After storing the au-
tomorphism group the associative memory provides an unlabeled pre-
sentation of the labeled structure under consideration. Recalling the
retrieval states links the energy minimization process of neural networks
with the theory of permutation groups.

1 Introduction

Three main computational problems in algebraic combinatorics are analytical
and constructive enumeration of structures, testing isomorphism of graphs, and
finding the automorphism group of graphs. These problems arise for example
in isomer generation, in the identification of chemical objects in huge databases,
and in the detection of symmetries of chemical graphs [5]. For all three problems
no polynomial time algorithm is known. However, the above problems are
closely related and their solutions are more or less conveniently obtained, once
the automorphism group is known [5].

In this contribution we show that the Hopfield model can be used as an as-
sociative memory for storing the automorphism group of any discrete reducible
structure o defined on a point set X. In contrast to the conventional associative
memory we want to store patterns, namely the automorphisms of ¢, which are
not known in advance. Nevertheless, to memorize the unknown automorphism
group we store the labeled structure o itself to obtain an wunlabeled presenta-
tion of 0. We then show that the automorphisms of ¢ correspond to the global
minima of the underlying energy function. After learning, the associative mem-
ory carries an inherent finite algebraic structure and links the neurodynamic
energy minimizing process to the theory of permutation groups. Permutation
groups are a basic concept in algebra and combinatorics. In various combina-
torial problems group theoretical information is permanently used. The link
to the theory of permutation groups facilitates access to mathematical results
in algebra and combinatorics and may deliver a new insight into the potential
capabilities of neural networks for solving combinatorial problems.
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2 Species of structures

We embed discrete structures like graphs, linear codes, designs, or finite geome-
tries in the theory of species, which is a modern way in algebraic combinatorics
of formalizing the examination of generating functions for many labeled struc-
tures [1]. Besides basic definitions from the theory of species, we introduce novel
concepts, namely the notion of induced substructure, reducible species and the
modular product to facilitate a memory model for storing the automorphisms.
Discrete structures are built on a ground set X of points, e.g. a graph
structure is built on the set of its vertices. Structures usually occur in a labeled
or in an unlabeled form. In the labeled form the points of X carry numbers,
letters or other kind of labels in order to distinguish the individual points of X.
In many combinatorial applications, the labeling often does not really matter.
So the corresponding unlabeled structure is defined to be the equivalence class
of all labeled structures, arising from each other by relabeling. In order to
formally introduce discrete structures let X = {1,...,n} be a finite set.

Species of structures: A species of structures is a rule S which
1. produces for each finite set X a finite set S[X],
2. produces for each bijection ¢ : X — Y a function S[¢] : S[X] — S[Y].
The function S[¢] should satisfy the following functorial properties:
1. for all bijections ¢ : X =Y, 7 :Y — Z, we have S[r o ¢] = S[r] 0 S[¢]
2. for the identity map 1x : X — X, we have S[1x] = LSix)-

The elements of S[X] are called S-structures on X and the function S[¢] de-
scribes the transport of S-structures along ¢. Note that S[¢] is a bijection by
definition of the functorial property of S. Thus a species of structures is a map-
ping S : X — S[X] where S[X] is a finite set consisting of elements o € S[X]
that can be expressed in terms of the labels ¢ € X only.

Example 1 Let X be a finite set.
1. Species P[X] of all subsets of X: P[X]|={Y : Y C X}
2. Species PY[X] of all k-element subsets of X: PF[X]|={Y C X : |Y| =k}
8. Species G[X] of simple graphs: G[X] = {(s,X) : o C PP[X]}
4. Species Per[X] of all permutations: Per[X] := {n | 7 : X — X, bijectively}

Induced substructures: Let Y C X a subset of X and o € S[X] be a
structure. By o|y we denote the restriction of o to the ground set Y, if o|y
exists and is a member of S[Y]. In this case we call o|y an induced substructure
of o induced by the subset Y. A species S[X] is said to be irreducible, if there
exists a subset Y C X and a structure ¢ € S[X] such that o]y ¢ S[Y].
Otherwise, we call S[X] reducible. Similarly, the elements of an irreducible
(reducible) species are called irreducible (reducible) structures.
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Example 2 LetY C X.

1. P[X] is reducible. Any o € P[X] is a subset 0 C X. For any subset Y C X
the restriction oly = o NY is a subset of Y and therefore an element of P[Y].

2. PY¥I[X] is irreducible. The restriction of a k-element subset o C X to any
subset Y with |Y| < k is a subset with less than k elements.

3. G[X] is reducible. Let (0,X) be a graph and Y C X. The restriction oly =
o N PEY] yields the induced subgraph (o|y,Y) € S[Y].

4. Per[X] is irreducible. Let i € X \'Y. Then the restriction of any permutation
o € Per[X] mapping an element j €Y to i does not exist.

Isomorphisms: Let X and Y be finite sets. An isomorphism ¢ from o € S[X]
to T € S[Y] is a bijection ¢ : X — Y, i > i? such that S[#](¢) = 7. In this case
we call o and 7 isomorphic (0 = 7). An automorphism of ¢ is an isomorphism
from o to o. The set Aut(o) of all automorphisms of ¢ forms a group called
the automorphism group of o.

Modular product: Let o € S[X] be a reducible structure and ¢ = (i1,42) and
7 = (J1, j2) elements of Pl [X]. The modular product of ¢ o j is defined to be

iod— 1 : ifo; 2oy
J=) -1 : otherwise

where o1 = 0|(;, j,3 and o2 = 0|{4, j,} are isomorphic substructures of . We
call 2 and 5 compatible, if 2o j = 1 and incompatible otherwise.

The species graph: Let (o, X) € G[X] be a graph structure. The elements of
X and o are called vertices and edges, respectively. A graph (7,Y) € G[Y] is an
induced substructure of (0, X) € G[X],if Y C X and 7 = o N P[Y]. A clique
C of a graph (o, X) is a subset C' C X, such that P[C] C 0. A mazimum
clique is a clique with maximum number of vertices. A mazimal clique is a
clique which is not contained in any larger clique. By G, [X] we denote the
species of weighted graphs. A weighted graph (o, X) is a graph where each edge
of o is weighted by a real valued scalar. In the following we simply write o
instead of (o, X), if the ground set X is known.

3 An Algebraic Associative Memory

The algebraic associative memory stores the automorphism group of a given
labeled reducible structure o. Since the pattern to be stored are unknown
in general, the associative memory stores the automorphisms of ¢ implicitly
by memorizing o itself. After learning, the memory provides an unlabeled
presentation of the labeled structure o, containing the automorphism group
Aut(o). The primary function of an associative memory is to retrieve the
memorized patterns (automorphisms) in response to a corrupted input pattern.

For the following mathematical analysis let |X| = n and N = n?. The
patterns are binary relations ¢ C X? encoded as N-dimensional binary vectors
x(0) € {0,1}". The components x;(g) of (o) are indexed by ¢ = (i1,i2) € X2,
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where z; = 1 if and only if 2 = (i1,42) € 0. We say a binary relation g maps i to
J, if (i,7) € p. For example an automorphism 7 € Aut(o) is a binary relation
encoded as a vector x(7) with components

wi(ﬂ):{ 1 ¢ ifdé=(i,i") 0

0 : otherwise.

Storing Phase. The essence of an associative memory is to map the patterns
onto the stable equilibrium points of the underlying dynamic system. We apply
this principle to store the unknown automorphism group of a structure o by
storing ¢ itself.

The topology of an associative memory is best described in terms of the
theory of species. The association structure A, of a structure o € S[X] is a
complete weighted graph structure on pLl [X] with weights w;; between vertices
2 and j. To store the automorphisms of o, the weights are adjusted according
to a similar form of the generalized Hebb rule for the one pattern problem

Wiz = Nij - (’L Oj) (2)
where 7;; > 0 depends on the type of connection. If ¢ and j are compati-
ble (incompatible), then their connection type is ezxcitatory (inhibitory) with
synaptic weight w;; = 155 = wg > 0 (w;; = —n;5 = —wr < 0). After learn-
ing, an unlabeled presentation of ¢ is stored in the associative memory. In the

next part we justify our approach and show that the memory indeed stores the
automorphism group Aut(o) by applying learning rule (2).

Retrieval phase. During retrieval the goal of the associative memory is to
recall the closest automorphism 7 € Aut(o) encoded as x(w) given a corrupted
input pattern x(p), which represents a binary relation ¢ C X?2. Typical ap-
plication scenarios would be to test whether a given permutation of X is an
automorphism of ¢, or trying to extend partial permutations defined on a sub-
set Y C X to an automorphism. More generally, besides automorphisms, an
input pattern can represent ambiguous, deformed, distorted, or incomplete ver-
sion of automorphisms or mixtures of those versions. Ambiguities are binary
relations o € X2, which map at least one element i € X to distinct elements of
X. Deformations are relations g, which correspond to non-injective mappings
on X. An incompletion is a synonym for a partial permutation.

Given an input pattern, we map the problem of retrieving the closest au-
tomorphism of a structure to the problem of finding a maximum clique in the
positive association structure AT of o. The structure A} is a simple graph on
PRIX] with {i,5} € AF if and only if 0§ = 1. Hebb’s rule establishes a
basis for an an associative memory such that its attractors corresponding to
the global minima of the underlying energy function are in 1-1 correspondence
to the automorphism of ¢. Theorem 1 shows that the maximum cliques of
the positive associative structure A} are in 1-1 correspondence to the auto-
morphisms of o. Examples of dynamical rules such that the maximum cliques
indeed correspond to the global minima of the underlying energy function
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are shown in [3], [4]. This maps the retrieval of the fundamental memories to
the problem of finding a maximum clique in A7 .

Theorem 1 Let A, be the associative memory of a reducible structure o €
S[X]. Then there ezists a bijection

X : Aut(o) - MC(AY)
from the automorphism group Aut(c) to the set of all mazimum cliques in A}.

Proof: Let m € Aut(o). Define x(7) = Cr = {(¢,4™) : i € X}. First we show that
C- is a clique of A} with n vertices. Let 4,5 € Cr with 4 = (i1,42) and § = (41, j2)-
By definition of x, we have i = 42 and jT = j2. Then the induced substructures
0'|{“ i1} and o, .} are isomorphic. By definition of the modular product we get
404 = 1. This yields {4,5} € AF. Thus C; is a clique. In addition, C, consists of n
vertices, since 7 is bijective and by definition of x.

Next we show that C, is a maximum clique. Assume that there exists a clique
C with |C| > n. Any vertex ¢ € C is of the form % = (i1,42) with ¢1,4i2 € X. Since
|X| = n and |C| > n + 1, there exist at least two vertices 2,7 € C with 43 = ji
and ¢2 # j2. Then the induced substructures o|{;, j,;1 = 0|{:;} and o|(,,j,} are not
isomorphic. Hence, 46 j = —1 and {4,5} ¢ AF. This contradicts our assumption
that C is a clique.

So far we have shown that y maps automorphisms to maximum cliques. Further-
more by definition x is well defined. Thus it is left to show that x is bijective. First
we prove that x is an injection. Let m # ¢ distinct automorphisms of o. Then there
exists an element i € X with ™ # ¢®. Thus (4,i") € Cr\Cy. Hence, Y is injective. To
show that y is surjective let C' be a maximum clique. Then the modular product of ¢
and j is 1 for any pair of vertices ¢, € C. Lifting back the definition of the modular
product yields an automorphism induced by C. This shows that x is surjective. O

Let A, be the associative memory of o and & be a corrupted input pattern.
To retrieve the closest automorphism from the memory we map that problem
to the problem of finding a maximum clique given that x is imposed as initial
activation onto the associative memory. Theorem 1 justifies this approach. A
standard procedure to solve the maximum clique problem by means of mini-
mizing the energy function of the associative memory according to the Hopfield
& Tank approach [2] proceeds as follows: After the initial activation is imposed
on the network, the memory evolves in accordance to a dynamical rule as given
in [3] or [4]

zi(t+ 1) = ot + we- Y o5(t) — wi- Y o5(t) (3)

FEN(D) GEN)

where z;(t) denotes the activity of unit ¢ € PP[X]. N(4) is the set of all
vertices j adjacent to vertex 2. The output function o0;(t) of unit i is a non-
decreasing function applied on its activation z;(t). During evolution of the
memory any unit is excited by all active units with which it can form a clique
and inhibits all other units. After convergence the stable state corresponds to a
maximal clique of X. The size of a maximal clique can be read out by counting
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the units with output o;(t) = 1.

Note, that the dynamical rule (3) as stated in different versions in [4], [3]
ensure convergence of the system to a stable state corresponding to a maximal
clique where the maximum cliques correspond to the global and the maximal
cliques to the local minima of the underlying energy function. Thus the output
of the associative memory corresponds either to the automorphism closest to
the input pattern if the retrieved clique C' is a maximum clique or to a spurious
state if C' is a maximal but not a maximum clique.

The spurious states give us some additional information about the memo-
rized structure. The maximal cliques of A} are in 1-1 correspondence to the
maximal isomorphisms between induced substructures of o. An isomorphism ¢
between induced substructures is induced by a partial permutation on the set
X. We call the isomorphism ¢ maximal, if the associated partial permutation
can not be extended to an automorphism of o. This statement is summarized
in Theorem 2. The proof of Theorem 2 is similar to the proof of Theorem 1.

Theorem 2 Let A, be the associative memory of a reducible structure o €
S[X]. Then the mazimal cliques of A} are in 1-1 correspondence to the magi-
mal isomorphisms between induced substructures of .

4 Conclusion

We presented an associative memory model for storing the automorphism group
of any discrete reducible structure. The proposed model carries an algebraic
structure and thus links the neurodynamic energy minimization process to
the theory of permutation groups. Retrieval of relevant memorized patterns
combined with basic results from group theory may yield an effective way to
compute the automorphism partition or the automorphism group.
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