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Abstract After an initial peak, the number of synapses in mammalian cerebral 
cortex decreases in the formative period and throughout adult life. However, if 
synapses are taken to reflect circuit complexity, the issue arises of how to 
reconcile pruning with the increasing complexity of the representations 
acquired in successive stages of development. Taking these two conflicting 
requirements as an architectural constraint, we show here that a simple 
topographic self-organization process can learn increasingly complex 
representations when some of its synapses are progressively pruned. By 
addressing the learning-theoretic properties of increasing complexity, the model 
indicates how pruning may be computationally advantageous. This suggests a 
novel interpretation of the interplay between biological and acquired patterns of 
neuronal activation determining topographic organization in the cortex. 

1. Introduction 
Several studies on the development of the cortex of primates (1, 2) and of humans 
(3, 4) have investigated the time course of synaptic development. After the first phase 
of explosive proliferation, the number of synapses gradually decreases, with an 
acceleration around puberty. With the possible exception of the prefrontal areas, 
proportions and timing of synaptic development appear to be similar across the cortex 
(5-7). 
The exact functional significance of synaptic pruning remains unclear. While there is 
some consensus that early synaptogenesis is endogenously regulated, it has been 
proposed that sensory experience directs synaptic pruning, for example as a selective 
mechanism driven by experience (8). In the human being, the prolonged learning 
phase means that representations acquired in successive stages of development 
become increasingly complex (9, 10). Within the connectionist framework, Quinn and 
Johnson (11) have shown that the features of generalizations that are typical of 
semantic categories in children can be explained by the gradual formation of internal 
representations whose initial complexity is low (for a review, see 12). However, 
synaptic pruning and increasing complexity are difficult to reconcile. In the network 
architectures often used to model cognitive processes, such as multi-layer perceptrons, 
high degrees of complexity of the network and of the functions it can approximate 
necessarily depend on large numbers of weights (13). Since these architectures are 
highly idealized models of a biological network, one might assume that in real brains 
there are plenty of ways to prune synapses and improve the quality of learning. 
However, intuitions such as this do not take into account that very little is required 
from the weights of a network to increase the complexity of the functions that can be 
represented. Consider, for example, the case of a layer computing a nonlinear 
transformation of the input (such as a Gaussian receptive field). Random weights 
modifying the input will contribute to the overall computational power of the network, 
and hence to the complexity of the patterns that can be learned. In general, in the 
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presence of nonlinear transformations it is not necessary that the weights be 
modifiable or chosen in any particular way; instead, it is enough that there be many of 
them (14). Indeed, even a set of fixed random weights plugged into a linear perceptron 
forms a learning machine that overcomes the complexity limits of the perceptron (15). 
In this study we will show that a simple topographic self-organizing process allows 
complexity to grow under pruning (16). Our network implements a minimal 
topographic self-organizing algorithm, and constitutes a variation on well-known 
schemes such as SOM (17, 18). Its distinctive feature consists in its capacity to 
characterize the input also at intermediate stages of learning. Like other self-
organizing architectures, this network can be used to discover clusters or distortion-
minimizing ‘prototypes’ from the input distribution, a task also known as 
‘quantization’ (19). Each output unit stores a prototype of the input in the weights of 
the connections from the input layer (‘code vector’). This architecture has many points 
of contact with models of category learning in cognitive psychology, where the 
prototypes model conceptual categories (20), but in slightly different form has also 
been used to model primary sensory cortical areas (21, 22). In our study, however, we 
will be primarily concerned with learning processes in the isocortex, for which there is 
also evidence of topographic organization (23). 

2. Network architecture 
The network is composed of an input and an output layer. The units in the output layer 
are arranged to form a lattice structure that defines the distance between them. To 
avoid edge effects, units at the borders of the lattice are considered adjacent. In the 
simulations that follow, the lattice is one-dimensional. The network is composed of 
three groups of weights. The first group consists of the weights connecting the input to 
the output layer. These are the only weights that learn adaptively during training, 
eventually storing the prototypes. The remaining weights constitute the ‘intrinsic’ 
connections between units within the output layer. They can be either excitatory or 
inhibitory, thus forming the second and third groups. Weights of the first group are 
initialized to small random values. Weights of the second and third groups are 
initialized according to an exponential function of the distance between the units they 
connect: 
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where j – j’ is the distance of the two units in the output map. For excitatory 
weights, we used α = 1.8, β = 0.2, ρ = 11.0; for inhibitory weights, α =−1.3, β = 0.1, 
ρ = 31.0. (In this and the equations that follow, an output unit is written yj when we 
refer to its activation, j when we refer to its position in the output map. The intrinsic 
weights in the output layer are denoted by the symbol wintr, and when we distinguish 
between excitatory and inhibitory weights, wexc and winh. The symbols w without the 
special superscript refer to the weights between input and output layer that are adapted 
during training. Vectors are in bold; hence, wj, wj’ are the prototypes attached to the 
units j and j’ in the map.) The slope of the exponential function initializing the 
excitatory weights is steeper than that of the inhibitory weights. Thus, the combined 
effect of the second and third groups of weights is that units in the output layer excite 
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their immediate neighbors and inhibit units further away. The result is the well-known 
‘Mexican hat’ architecture. 
The spread of activation is accomplished in two successive phases. In the first phase, 
units in the output layer behave as receptive fields tuned to the Euclidean distance 
between each weight vector and the input: 
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where x is the input vector, and ρI the width of the receptive fields. In all simulations, 
ρI was set to 4.0. At this point, the ‘winner unit’ is defined as the unit with the largest 
activation (nearest neighbor rule), and its index in the output lattice as the ‘code’ of 
the current input. In the second phase, the output layer is updated through its own 
intrinsic connections: 
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which is the logistic function with a range between –1 and 1 and gain γ, which was set 
to 8.0 in the simulations. Because they are a function of the distance between output 
units, the intrinsic connections are symmetric and translation invariant. Hence, the 
effect of updating in the second phase is qualitatively described by an attractor 
dynamic (24), with all attractors having the same shape, but being located in different 
positions in the output map.  
To ensure that the attractor in the output layer is located in the region where the 
receptive fields are most active, we updated the output units in order of their 
activation as it was acquired in the first phase, starting from the least activated unit. 
This corresponds to the assumption that the more active units reach their discharge 
threshold earlier than less active units. The attractor then looks like a blob of 
activation around the winner. This more realistic modification marks the originality of 
our network. Without it, the network becomes dysfunctional after moderate degrees of 
pruning (the activation pattern in the output layer is governed by an attractor dynamic, 
but the attractor is not situated in correspondence of the winner). As the simulations 
will show, this modification also determines the distribution of the code vectors at 
intermediate stages of training. Unlike what is observed in ordinary topographic self-
organizing maps (18), in these phases the code vectors are located at the center of 
large input clusters instead of being scattered around in the input space following the 
topology of the map (16). 
Because of their configuration around the winner, the activation values in the output 
map after the second phase define a set of neighboring candidate code vectors, which 
are used to implement a soft competition scheme for the design of a quantization 
algorithm (25). Hence, training of the first group of weights is accomplished by a 
Hebbian competitive learning rule, in which the amount of adaptation is weighted by 
the activation in the output layer: 

( )j j jyη∆ = −w x w , 
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where the learning rate η was kept at 0.01 during the whole training process. This rule 
attempts to minimize the Euclidean distance between the input pattern and the closest 
code vector, i.e. the average distortion between the input pattern and its prototype. 
During training, the second and third groups of weights do not learn. Instead, the 
excitatory weights of the second group are gradually eliminated starting from those 
with smaller magnitude: 
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where κ is a pruning factor that was gradually increased from 0.4 to 1.8, E the number 
of steps in the train epoch, r a random value between 0 and 1, and N is the size of the 
output layer. The weights of the third group are left unaltered. 

3. Results 
In all simulations we will pursue the somewhat canonical learning goal of finding 
prototypes for clusters of points located on a hypersphere of unitary radius (26). Each 
cluster, representing a category, is constituted by a Gaussian distribution around a 
centroid. Points are generated for each cluster with equal probabilities. 
The purpose of the first simulation is to visualize the behavior of the pruning 
algorithm. For this reason, the input clusters are bi-dimensional and regularly grouped. 
Figure 1 shows the location of thirty code vectors (black spots) relative to the input 
patterns (small gray points) at progressive stages of the learning process. In the figure, 
the code vectors appear to increase in number during learning. In reality, there are 
always the same number of code vectors, clustered together so closely to become 

 
 
Figure 1. Location of 30 code vectors at intermediate stages of training (from left to right). In 
their progressive adaptation to the input distribution, the code vectors maintain topographic 
order. The average MTP index (a measure of topological preservation ranging from –1 to 1, 

with 0 indicating no preservation, devised by Bezdek and Pal, 27) of 15 networks thus trained 
was .63 (std. dev. .08), compared to .58 (std. dev. .06) obtained with topographic SOM. 

undistinguishable. The number and location of the clusters of code vectors increase 
progressively adapting to the details of the input. Thus, the initial two clusters encode 
the ‘global’ two categories corresponding to the broadest two groupings of the input. 
Progressively smaller groupings are represented, corresponding to learning categories 
from the ‘global’ to the ‘basic’ level (10). 
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Intuitively, we may regard an object as simple if a short description of it can be 
formulated (28). We will approximate a measure of complexity by measuring the 
entropy of the set of codes (29). An important requirement on our measurement of 
complexity is also that it mirror the increase in categories that occurs in human 
cognitive development. For memory processes of semantic nature, a natural 
approximate measure of complexity is constituted by the number of distinct 
representations that are in storage. Hence, we will also measure the number of 
representations that are formed at different levels of pruning. Because the entropy has 
an upper bound that is a function of the number of codes, we expect these two 
measures to be related; the simulations will show that this is effectively the case. 
To demonstrate the increase of complexity of the category set we will challenge the 
network with more complicated multidimensional patterns, constituted by a 14-
dimensional Gaussian mixture of 30 centroids as input. The centroids were initialised 
randomly according to a uniform, isotropic distribution. The network had 30 output 
units arranged in a one-dimensional lattice. We estimated the entropy and number of 
different used prototypes by averaging over 400 networks trained on the same input 
distributions, but at increasing pruning levels. The result of these experiments is 
displayed in Figure 2, which demonstrates that the complexity of the network raises 
almost steadily with increasing levels of pruning. 
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Figure 2. Entropy (black, circles) and used prototypes (gray, squares) at increasing degrees of 
pruning. For 30 prototypes in total, 3.40 nats is the maximal entropy that can be achieved. The 

correlation coefficient between pruning and entropy is r = 0.79; between pruning and the 
number of active prototypes, r = 0.84. 

For each experiment we created 20 independent training data sets Dk (k = 1, 2, ... 20) 
of 120 records each from the same Gaussian mixture distribution. We then trained 20 
networks on each data set independently, and estimated the entropy H of each. To 
obtain an estimate of H over the distribution of the codes, we averaged it over 5,000 
new realizations of the input: 
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Thus, each experiment produces an estimate of entropy given an input distribution and 
a pruning level. To control for effects due to the random initialisation of the Gaussian 
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mixture, the experiment was repeated 20 times with new realization of the uniform 
centroid distribution. This procedure was repeated in 20 different conditions 
characterised by increasing degrees of final pruning.  The number of used code 
vectors was obtained similarly, in each experiment averaging over the total number of 
different codes that were assigned when the centroids were used as input in turn. 

4. Discussion 
Our results are remarkable for three reasons. Firstly, satisfaction of either of these 
constraints (increasing complexity and decreasing number of synapses) is common 
among existing architectures, but not of both. It is not difficult to find in the existing 
literature on self-organization examples of models where complexity increases during 
training, as for example in ART2 (30) or in dynamic versions of Kohonen’s self 
organizing map (31). However, in these architectures the number of synapses 
increases during training. By converse, well-known clustering techniques, such as 
principal component analysis,  derive a large number of clusters, from which a subset 
can be selected. However, in such cases the complexity is initially high, and 
subsequently decreases when a smaller subset of clusters is selected.  
Secondly, unlike selective elimination, complexity increase constitutes a learning 
strategy with demonstrable inferential properties (32). In the framework of statistical 
learning theory, the input-output mapping learned from a finite number of examples 
cannot be confidently used to generalize to unobserved cases if the complexity of the 
network is not limited in relation to the size of the training set (33). Hence, in on-line 
learning settings it is important to adjust network complexity so as to allow gradually 
more complex representations during the progression of training. 
Thirdly, the fact that this inferential strategy may be implemented though an 
anatomical structure represents a novel interpretation of topographic organization of 
certain cortical areas. Existing interpretations point out the biological advantage of 
keeping often activated connections short (34), but fall short of individuating any 
computational advantage of topographicity. 
Current empirical evidence is consistent with the model presented here. In the 
macaque monkey, pruning disproportionately affects synapses in layer II and III of the 
isocortex (1, 6). There is increasing evidence that layer II and III, where interneurons 
with horizontal connections are hosted, exercise a directive influence over the 
topographic organization of the cortex, as their reorganization after deafferentiation 
precedes that of the granular layers (35). Furthermore, as a result of the pruning 
process the ratio between synapses of the symmetric type (inhibitory) to the 
asymmetric type (excitatory) is inverted in layer II and III, with inhibitory synapses 
taking the lead in adulthood (6). In contrast with the synaptic selection theory,  the 
development of synapses in layers II and III does not depend on the presence of 
external stimuli, as neither stimulation nor sensory deprivation prevent the formation 
of topographic organization (36-38). 

References  
1. Rakic P, Bourgeois JP, Eckenoff MF, Zecevic N, Goldman-Rakic PS (1986). 

Concurrent overproduction of synapses in diverse regions of the primate 
cerebral cortex. Science 232:232-235 

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 287-294



 

 

2. Rakic P, Bourgeois J-P, Goldman-Rakic PS (1994). Synaptic development of the 
cerebral cortex: Implications for learning, memory, and mental illness. Prog. 
Brain. Res. 102:227-243 

3. Huttenlocher PR (1979). Synpatic density in human frontal cortex: Developmental 
changes and effects of aging. Brain Res. 163:159-189 

4. Huttenlocher PR, Dabholkar AS (1997). Regional differences in synaptogenesis in 
human cerebral cortex. J. Comp. Neurol. 387:167-178 

5. Zecevic N, Rakic P (1991). Synaptogenesis in monkey somatosensory cortex. 
Cereb. Cortex 1:510-523 

6. Bourgeois JP, Rakic P (1993). Changes of synaptic density in the primary visual 
cortex of the macaque monkey from fetal to adult stage. J. Neurosci. 
13:2801-2820 

7. Bourgeois JP, Goldman-Rakic PS, Rakic P (1994). Synaptogenesis in the prefrontal 
cortex of rhesus monkey. Cereb. Cortex 4:78-96 

8. Changeux JP, Danchin A (1976). Selective stabilization of developing synapses as a 
mechanism for the specification of neural network. Nature 264:705-712 

9. Keil FC (1983). On the emergence of semantic and conceptual distinctions. J. Exp. 
Psychol., Gen. 112:357-385 

10. Mandler JM, Bauer PJ, McDonough L (1991). Separating the sheep from the 
goats: Differentiating global categories. Cognitive Psychol. 23:263-298 

11. Quinn PC, Johnson MH (1997). The emergence of perceptual category 
representations in young infants: A connectionist analysis. J. Exp. Child 
Psychol. 66:236-263 

12. Mareschal D, Quinn PC (2001). Categorization in infancy. Trends Cogn. Sci. 
5:443-450 

13. Hornik K, Stinchcombe M, White H (1989). Multilayer feedforward networks are 
universal approximators. Neural Netw. 2:359-366 

14. Cover TM (1965). Geometrical and statistical properties of systems of linear 
inequalities with applications in pattern recognition. IEEE Trans. Electron. 
Comput. EC-14:326-334 

15. Gallant SI (1990). A connectionist learning algorithm with provable generalization 
and scaling bounds. Neural Netw. 3:191-201 

16. Viviani R (2002). Lateral interactions in self-organizing maps In: Dorronsoro JR 
(ed). Artificial Neural Networks - ICANN 2002 (Lecture Notes in Computer 
Science n. 2415), pp. 920-926 

17. Willshaw DJ, von der Malsburg C (1976). How patterned neural connections can 
be set up by self-organization. Proc. R. Soc. Lond. B 194:431-445 

18. Kohonen T (1982). Self-organized formation of topologically correct feature 
maps. Biol. Cybern. 43:59-69 

19. Gersho A, Gray RM (1991). Vector Quantization and Signal Compression. 
Dordrecht: Kluwer 

20. Nosofsky RM, Kruschke JK, McKinley SC (1992). Combining exemplar-based 
category representations and connectionist learning rules. J. Exp. Psychol., 
Learning Mem. Cogn. 18:211-233 

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 287-294



 

 

21. Obermayer K, Ritter H, Schulten K (1990). A principle for the formation of the 
spatial structure of cortical feature maps. Proc. Natl. Acad. Sci. USA 
87:8345-8349 

22. Spitzer M, Böhler P, Weisbrod M, Kischka U (1995). A neural network model of 
phantom limbs. Biol. Cybern. 72:197-206 

23. Harris JA, Harris IM, Diamond ME (2001). The topography of tactile learning in 
humans. J. Neurosci. 21:1058-1061 

24. Hopfield JJ (1982). Neural networks and physical systems with emergent 
collective computational abilites. Proc. Natl. Acad. Sci. USA 79:2554-2558 

25. Yair E, Zeger K, Gersho A (1992). Competitive learning and soft competition for 
vector quantizer design. IEEE Trans. Sign. Process. 40:294-308 

26. Rumelhart DE, Zipser D (1985). Feature discovery by competitive learning. Cogn. 
Sci. 9:75-112 

27. Bezdek JC, Pal NR (1995). An index of topological preservation for feature 
extraction. Pattern Recognition 28:381-391 

28. Li M, Vitányi PMB (1992). Inductive reasoning and Kolmogorov complexity. J. 
Computer Syst. Sci. 44:343-384 

29. Cover TM, Thomas JA (1991). Elements of Information Theory. New York: John 
Wiley & Sons 

30. Carpenter GA, Grossberg S, Rosen DB (1991). ART 2-A: An adaptive resonance 
algorithm for rapid category learning and recognition. Neural Netw. 4:493-
504 

31. Fritzke B (1994). Growing cell structures. A self-organizing network for 
unsupervised and supervised learning. Neural Netw. 7:1441-1460 

32. Devroye L, Györfi L, Lugosi G (1996). A Probabilistic Theory of Pattern 
Recognition. Berlin: Springer 

33. Vapnik VN (1995). The Nature of Statistical Learning Theory. Berlin: Springer 
34. Durbin R, Mitchison G (1990). A dimension reduction framework for 

understanding cortical maps. Nature 343:644-647 
35. Trachtenberg JT, Stryker MP (2001). Rapid anatomical plasticity of horizontal 

connections in the developing visual cortex. J. Neurosci. 21:3476-3482 
36. Bourgeois JP, Jastreboff PJ, Rakic P (1989). Synaptogenesis in visual cortex of 

normal and preterm monkeys: Evidence for intrinsic regulation of synaptic 
overproduction. Proc. Natl. Acad. Sci. USA 86:4297-4301 

37. Bourgeois JP, Rakic P (1996). Synaptogenesis in the occipital cortex of macaque 
monkey devoid of retinal input from early embryonic stages. Eur. J. 
Neurosci. 8:942-950 

38. Murphy KM, Duffy KR, Jones DG, Mitchell DE (2001). Development of 
cytochrome oxidase blobs in visual cortex of normal and visually deprived 
cats. Cereb. Cortex 11:122-135 

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 287-294




