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Abstract - In this paper we investigate mixture of experts problems in 
the context of Local-Global Neural Networks. This type of architecture 
was originaly conceived for functional approximation and interpolation 
problems. Numerical experiments are presented, showing quite nice 
solutions. Because of its local characteristics, this type of approach 
brings the advantage of improving interpretability.  
 

 

1.  Introduction  
 
The Local-Global Neural Network (LGNN) architecture was introduced in [1] and 
[2]. This model was originaly proposed to approach functional approximation and 
interpolation problems. The main idea is to approximate the original function by a set 
of very simple approximation functions and by functions called activation-level 
functions. The considered algorithm shows an interesting capability to reconstruct the 
function from local estimates along domain of interest. In this paper we propose the 
use of LGNN model in the context of Mixture of Experts. Numerical examples are 
presented considering polynomials and Neural Networks experts. 
 
 
2. Local-Global Neural Network Architecture 
 
The central idea of LGNN model is to express the inter-output mapping by a 
piecewise structure. The network output is constituted by a combination of several 
pairs, each of those composed by an approximation function and by an activation-
level function. The activation-level functions define the role of an associated 
approximation function, for each subset of the domain. Partial superposition of 
activation-level functions is allowed. In this way, the problem of approximation 
functions is approached by the specialization of neurons in each of the sectors of the 
domain. In other words, the neurons are formed by pairs of activation-level and 
approximation functions that emulate the generator function in different parts of the 
domain.  
Let { }n

1ix  be the subset of the available data that is used for training. For algebraic 
and notational simplicity we will consider x∈ℜ (x subscript is omitted). 
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Generalization for x∈ℜn is straightforward. Let x∈ℜ, the activation-level function is 
defined by: 
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where ψB=(d, h(1), h(2))t is a vector of real parameters. Parameter d is related to the 
function declivity while parameters h(1) and h(2) delimit the domain sector where the 
associated activation-level function is more active. 
The global approximation of a function can be approached through a partition of the 
function domain. In each region of the partition, the objective function can be locally 
approached by an approximation function. The degree of specialization in a region is 
given by the value of the activation-level function. Partial superposition of these 
functions may occur providing better quality of the intended mapping. The function 
g(x) that approximates the objective function can be expressed as: 

g(x) = ),x(),x(B
jj
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where ψκj is a vector of parameters associated to the approximation function κj, to be 
estimated. In the LGNN architecture (See Figure 1), each neuron is constituted by a 
pair {activation-level function; approximation function}. The input is connected to 
the nodes producing as their output the activation-level and approximation function, 
Bj(x) and κj(x) product. The parameters to be estimated are associated to neuron-
pairs: 3 parameters for function B and the number of parameters of approximations 
functions (for example: 2 for linear case, 3 for quadratic). The output of the jth neuron 
is Bj(x) κj(x), and the network output is given by equation 1. 
If one defines, for each neuron, a vector of parameters ( )
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set of parameters to be estimated can be written as ),...,( m1 ℑℑ=ℑ . The vector ℑ  
could be estimated as a minimum argument of the mean square error (MSE). [1] and 
[3] a theorem that gives theoretical consistency to the proposed methodology is stated 
and proved. It guarantees that any L2-integrable function may be approximated by 
functions {gm(x)}. They also present a heuristic to choose starting values in the 
parameters estimation procedure. This heuristic provides accelerated convergence, 
and the initial choice of the parameters )1(

ih and )2(
ih , i=1,...,m may reflect a priori 

knowledge on the function domain. 
 
 
3. Local-Global Neural Networks and Mixture of Experts 
 
The idea of using a mixture of experts for achieving a complex mapping function, 
based on a “divide and conquer” strategy, was proposed by [4]. The motivation for 
the development of this model is twofold: first, the ideas of [5], viewing competitive 
adaptation in unsupervised learning as an attempt to fit a mixture of simple 
probability distributions into a set of data points; and the ideas developed in [6] using 
a similar modular architecture but a different cost function. 
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Figure 1 – The proposed architecture  
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Figure 2 – Multi-experts architecture  

In general terms, the problem of mixture of experts, can be presented as in [4]: Let us 
assume that the set of training cases can be naturally divided into different subgroups 
that correspond to distinct subtasks according to knowledge of the problem. The 
interference (fitting errors) can be reduced by using a system composed by some 
experts and a gating network, that decides which expert should be used for each 
training case. Each expert can be a neural network or any other model and all experts 
receive the same inputs and have the same number of output. The gating network is 
also a Feedforward Neural Network and could receive another type of inputs. The 
output of this network gives us the probabilities of selecting each expert.  
In training phase one of the probabilities pi approaches one while all the others are 
vanished. In this paper, we propose to use as outputs of the gating network, 
activation-level functions, as used in [1] and [2], instead of the probability concept. 
Using activation-level functions provides a smooth transition between experts. In the 
following section preliminary numerical results are presented. In order to evaluate the 
operation of the method and analyze how the division of the expert’s domain is made, 
simple examples are used. 
 
 
3. Numerical Results 
 
In this section, two types of numerical experiments are presented. We first simulate 
experiments with 2 and 3 experts, where it is considered that the outcome of each 
expert can be fitted to a linear or a quadratic function. After that, we present a more 
complex experiment, where a neural network is considered as one of the experts.  
Training data were generated without any noise. In experiments 1 (2 and 3 experts, 1 
and 2-degree polynomials) the first figure (Figure 3a, 4a) represents the hypothetical 
situation that generated the data, in terms of approximation and activation-levels 
functions. The training data (x,f(x)) are generated in accordance with equation (1). 
Levenberg Marquardt algorithm was used for optimization purposes. Data used in the 
generalization stage had been generated from a uniform distribution in the considered 
interval, using about 40% of the total of data in the training stage. We consider the 
MSE (Mean Square Error) and MAPE (Mean Percentile Absolute Error) as error 
measures. 
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Experiments with Polynomials Experts. 

For the following examples, the functions used to generate mixture are represented in 
Figure 3-a. The training set is formed from this situation in x=[0:0.1:6] in Example 1 
and x=[0:.1:10] in Example 2. The third experiment is composed by 3 experts, where 
all are polynomials. Figure 4a shows the theoretical shape used to generate the data, 
following equation 1 in x=[0:0.1:30]. Table 1 presents the results obtained for all 
these examples. 
 

Table 1. Results for a Mixture of polynomial experts  
Training GeneralizationEx No.Experts Iterations 

MSE MAPE MSE MAPE
1 2 136 0.0406 0.1731 0.0566 0.2052 
2 2 75 0.0377 0.5198 0.0348 0.5327 
3 3 133 0.0110 0.6586 0.0265 1.2868 

 
The results for 3-expert examples, using linear and quadratic experts are excellent. 
The algorithm converges in relatively few iterations with pretty good training errors. 
The values obtained in the generalization phase can be considered good.  
 
Experiment with MLP experts  

Problems that involve more complex functional representations need more 
sophisticated experts. For example, to simulate the function: 
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it is reasonable to use two experts, one to pick-up the quadratic behavior and a neural 
network, for the interval where the function has a more complex functional form. We 
use here a MLP with one hidden layer and 5 or 6 neurons (MLP(5) and MLP(6)). The 
starting solution is obtained by fitting each expert separately. Table 2 summarizes the 
obtained results in this in case. The set of points (x, f(x)) with x=[-2:0.05:3] was 
considered as training set. 
 

Table 2. Results for the Mixture of two experts [Pol(1) and MLP(n)] 
Training Generalization 

Neurons 
 

Iterations MSE MAPE MSE MAPE
5 173 0.0387 4.2958 0.0493 5.3675 
6 67 0.0021 1.1919 0.0026 1.7870 

We remark that it is not possible to improve the training results without losing 
generalization capacity. With 5 neurons we lose a little in fitting at the end of the 
interval (Figure 5a); this indicates that a modification in the architecture is needed. 
With 6 neurons an excellent fitting is obtained after 127 iterations. It is interesting to 
observe that the method is able to allocate each expert to its interval, obtaining a 
mixture in the intersection of intervals that smooth the transition from the linear 
expert to the MLP expert.  
In this last experiment we deal with two MLP neural networks as experts. Each MLP 
expert has one hidden layer. The data had been generated from the function: 
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to a network with 5 and 11 neurons in the hidden layer respectively. The heuristic 
proposed in [1] was used to find an appropriated starting solution. The results are 
illustrated in figure 6. The obtained errors has MAPE equals to 0.08% and 0.1% for 
training and generalization stages.  
 
 
4. Final Remarks 
 
In this article we focused  the mixture of experts problems with the ideas of Local 
Global Neural Networks. Numerical experiment results showed quite satisfactory 
solutions, emphasizing the potentiality of the considered method. This type of 
approach brings the advantage of improving the ability of interpretation since the 
location of the activation-level functions can indicate changes in the model. The use 
of the method in more complex problems and with real data is under investigation. A 
study on the identifiability of the model is being lead and the results are expected 
improve the robustness of estimation. 
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Figure 3- Mixture of 2 Experts. Example 1. a)Theoretical shape. b) in Sample test c) Shape 

solution. 
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Figure 4- Mixture of 2 Experts. Example 3. a)Theoretical shape. b) in Sample test c) Shape 

solution. 
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Figure 5- Mixture of polynomial and MLP(n). a, b: in Sample test MLP(5) and MLP(6). c) 

Shape solution for MLP(6) 
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Figure 6 - Mixture of MLP(5) and MLP(11) a) Starting solution. b) in sample test c) Shape 

solution 

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 331-336




