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Abstract. In this paper, we present an algorithm that minimizes the
mutual information between the outputs of a perceptron with two hid-
den layers. The neural network is then used as separating system in the
NonLinear Blind Source Separation problem.

1 Introduction.

Various signal processing applications involve estimating signals of interest from
distorted observations. The so-called Blind Source Separation (BSS) is one that
consists of retrieving unobserved source signals s1(t), . . ., sN (t), assumed to
be mutually statistically independent, from only N observed signals x1(t), . . .,
xN (t) which are unknown functions or mixtures of the sources. In a vector form,
it reads:

x(t) = F(s(t)) (1)

where F : RN → RN is an unknown reversible mapping, s(t) = [s1(t), . . . , sN (t)]T

is the source vector and x(t) = [x1(t), . . . , xN (t)]T is the so-called observation
vector, being the only available data. The task of BSS is that of recovering the
sources from the observations.

Starting from the seminal work [3], this problem has been intensively studied
over the last decade due to its wide range of applications, from array signal
processing to biomedical engineering. In the nonlinear mixture case, locally
linear BSS methods have been recently explored by Karhunen et al [5] using a
K-means-clustering-based method. The post-nonlinear case has been dealt by
Taleb and Jutten [8], who propose to minimize the mutual information between
the estimated sources using a nonlinear system that precedes a linear separating
stage. Puntonet et al [6] used simulated annealing to avoid undesired minima
in the training of a modified Kohonen’s network. In addition, Rojas et al [7]
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proposed a separating system which approximates the nonlinearities of the post-
nonlinear mixture model by means of odd polynomials and made use of genetic
algorithms for the optimization of the system.

However, with the exception of [4, 9], contributors do not explore the capa-
bilities of multilayer perceptrons (MLPs) to approximate nonlinear mappings.
In [9], a two-layer perceptron is used as system to separate the sources. It
is ensured that the network is invertible by setting the number of neurons in
the hidden layer to the number of sources. This is a very severe constraint
that endangers the approximation capabilities of the net. Nevertheless, if such
a constraint were eliminated, one would meet serious mathematical difficulties.
Hence, rather than increasing the number of neurons in the first hidden layer,
the solution may be the use of two of more hidden layers. The purpose of this
paper is to present learning rules for approximating the inverse of F by using
MLPs with two hidden-layers. From this point of view, our work complements
the one in [9]. The paper is organized as follows: in Sections 2 the basic idea
is developed into a practical proposal. In Section 3, learning rules for the MLP
are given. Section 4 is devoted to experiments. Section 5 contains our main
conclusions.

2 Source Separation

2.1 Basic Assumptions and Notations

The following assumptions hold throughout the paper:

(A1) The sources si(t) are mutually statistically independent. That is, at each
time t, the elements of s(t) are independent.

(A2) The mixing mapping F : RN → RN is memoryless, differentiable and
bijective.

Here, the basic idea is to approximate the inverse of F by using the neural
network shown in Figure 1, as MLPs have the universal approximation property
for smooth continuous mappings. Such a network is described by the equations:

F−1(x(t)) ≈ y(t) = W1g(u(t) + b1) (2a)

being
u(t) = W2f(w(t) + b2) (2b)

and
w(t) = W3x(t) (2c)

where W1, W2 and W3 are square matrices, g(a) = [g1(a1), . . . , gN (aN )]T and
f(a) = [f1(a1), . . . , fN (aN )]T are any continuous sigmoid-type functions and
both b1 and b2 are N × 1 vectors. Since the system is memoryless, notice that
we will drop time index t in the following.
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Figure 1: Neural Network Architecture.

2.2 Information-Theoretic Criterion

The guiding principle of unsupervised source separation is, in most approaches,
to transform the observed data so that the transformed variables are as mutually
independent as possible. Even thought that this transformation is not unique in
the non-linear mixture case, numerous experiments show that source separation
is feasible and one separates the sources (see, for example, [4, 5, 9]), provided
that the nonlinear mixture of the sources is smooth and can be undone through
a smooth transformation.

The degree of dependence between the outputs is commonly quantified by
their mutual information, which is defined as:

I(y) = −H(y) +
N∑

i=1

H(yi) (3)

where H(· ) is the Shannon differential entropy. The key property is that I(y) ≥
0 with equality if and only if the outputs are independent. In practice, usual
methods to estimate mutual information, that is, histogram-based estimators
and kernel-based estimators are computationally expensive. On the contrary,
we can easily calculate I(y) as follows: by using (2), −H(y) is expanded as:

−H(y) = −H(x)−
3∑

i=1

log | Wi | −
N∑

i=1

E[ log | g′i(ui + b1
i ) f ′i(wi + b2

i ) | ] (4)

where H(x) is the joint entropy of the observed signals, | Wi |=| det(Wi) |, bj
i

stands for the i-th component of vector bj and g′i(· ), f ′i(· ) are the first-order
derivatives of gi(· ) and fi(· ), respectively. Next, by assuming that the outputs
are pseudo-sphered (i.e., they are zero-mean unit-variance signals), the marginal
entropies H(yi) can be approximated as (see [2], chapter 5 and [9]):

H(yi) ≈ 1
2

log(2πe)− (κi
3)

2

12
− (κi

4)
2

48
+

3
8
(κi

3)
2 κi

4 +
(κi

4)
3

16
(5)

where κi
3 = E[(yi)3] is the skewness measure of yi and κi

4 = E[(yi)4]− 3 equals
its kurtosis. To encourage the pseudo-sphering, Tikhonov regularization terms
are added to (3). The final cost function then reads:

J (y) = I(y) + λ1

N∑

i=1

(E[yi])2 + λ2

N∑

i=1

(E[y2
i ]− 1)2 (6)
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3 Learning Rules

In the following, let bj
i denote the i-th entry of vector bj . Likewise, we define:

Φg[u]
def
= −[

g′′1 (u1 + b1
1)

g′1(u1 + b1
1)

, . . . ,
g′′N (uN + b1

N )
g′N (uN + b1

N )
]T (7)

Φf [w]
def
= −[

f ′′1 (w1 + b2
1)

f ′1(w1 + b2
1)

, . . . ,
f ′′N (wN + b2

N )
f ′N (wN + b2

N )
]T (8)

Dg(u)
def
= diag(g′1(u1 + b1

1), . . . , g
′
N (uN + b1

N )) (9)

Df (w)
def
= diag(f ′1(w1 + b2

1), . . . , f
′
N (wN + b2

N )) (10)

hi = {−κi
3

2
+

9
4
κi

3 κi
4 }y2

i + {3
4
(κi

4)
2 +

3
2
(κi

3)
2 − 1

6
κi

4} y3
i (11)

and
ŷ = h + 2 λ1 E[y] + 4 λ2 E[y¯ y− 1]¯ y (12)

where h = [h1, . . . , hN ], ¯ stands for the Hadamard product and 1 is a vector
of ones. In order to avoid inverse matrix operations, we use the natural gradient
rule (see [1], chapter 1) to derive the unsupervised learning rule for minimizing
the mutual information between the outputs of a perceptron with two hidden
layers (see Table 1). It has been verified that the natural gradient adaptation is
better than the conventional gradient in terms of computational complexity and
theoretical appeal, since natural gradient takes into account the Riemannian
metrics of the problem [1]. Due to the lack of space, proofs are left for an
extended version of the paper; in any case, they are quite simple (although
somewhat cumbersome).

1. d
dtW1 = {I − E[ŷyT ]}W1

2. d
dtW2 = {I − E[Φg uT −Dg WT

1 ŷuT ]}W2

3. d
dtW3 = {I − E[DfWT

2 ΦgwT + ΦfwT +
+DfWT

2 DgWT
1 ŷwT ]}W3

4. d
dtb1 = −E[Φg + Dg WT

1 ŷ]

5. d
dtb2 = −E[DfWT

2 Φg + Φf + DfWT
2 DgWT

1 ŷ]

Table 1: Learning Rules.
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Figure 2: from the left to the right, a) source signals b) nonlinear mixtures c)
estimated sources (after 20 sweeps).

4 Computer Simulation

Due to limited space, we shall present in this paper only an illustrative example.
The sources, nonlinear mixtures and separated signals are depicted in Figure 2.
The mixtures were generated using the model: x = A1tanh(A2 s), where

A1 =




1.2 −0.1 1.0
−1.2 −1.6 1.4
−0.1 0.2 −0.8


 , A2 =




0.5 −2.2 0.6
−0.2 −0.1 0.5
−0.9 −1.0 1.7




The mixing function is strongly nonlinear (no algorithm originally devised for
linear mixtures [2] was able to separate the sources). A 1000-sample training set
was used for adjusting the network. We employed a batch version of the learning
rule (block size and learning rate were set to 100 samples and 0.001 respectively).
A little momentum term was also added to speed up the learning process. Both
regularization parameters λ1 and λ2 were set to 10. The algorithm converges
in less than 20 sweeps. The three sources are recognizable after the separation,
specially in the Fourier domain. Nevertheless, the system connecting the sources
to the estimated sources still exhibits some form of nonlinear behavior. Hence,
the output of the separating system contains new frequency components which
are not present in the sources. This illustrates the complexity of the nonlinear
BSS problem. In fact, other algorithms [2, 9] do not obtain much better results,
being only able to separate few sources in practice.
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5 Conclusions and Future Research

We have presented learning rules for minimizing the mutual information between
the outputs of a perceptron with two hidden layers. This neural network can be
successfully applied to the nonlinear BSS problem. Our work was inspired by the
fact that neural networks with several hidden-layers can enlarge the nonlinear
mapping set that can be approximated. However, the experiments show that
networks with two hidden layers are more prone to fall into bad local minima
than networks with a single hidden layer, such as the one proposed in [9]. To
avoid such undesired minima, we have obtained promising results by using a
genetic algorithm [7]. The rough estimation (5) of the marginal entropies may
be also responsible for this proliferation of local minima [8]. This point should
be studied further in the future.
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