
The Hypersphere Neuron

Vladimir Banarer, Christian Perwass, Gerald Sommer

Institut für Informatik, CAU Kiel, Preusserstr. 1-9, 24105 Kiel, Germany
vlb, chp, gs @ks.informatik.uni-kiel.de

Abstract. In this paper a special higher order neuron, the hypersphere
neuron, is introduced. By embedding Euclidean space in a conformal
space, hyperspheres can be expressed as vectors. The scalar product of
points and spheres in conformal space, gives a measure for how far a
point lies inside or outside a hypersphere. It will be shown that a hyper-
sphere neuron may be implemented as a perceptron with two bias inputs.
By using hyperspheres instead of hyperplanes as decision surfaces, a re-
duction in computational complexity can be achieved for certain types
of problems. Furthermore, in this setup, a reliability measure can be
associated with data points in a straight forward way.

1 Introduction

The basic idea behind a single standard perceptron is that it separates its input
space into two classes by a hyperplane [8]. For most practical purposes such a
linear separation is, of course, not sufficient. In general, data is to separated
into a number of classes, where each class covers a particular region in the
input space. The basic idea behind classifying using a multi-layer perceptron
(MLP), is to use a number of perceptrons and to combine their linear decision
planes, to approximate the surfaces of the different class regions. In principle,
a MLP can approximate any type of class configuration, which implies that it
is an universal approximator [3, 4].

However, being an universal approximator alone says nothing about the
complexity a MLP would need to have in order to approximate a particular
surface. In fact, depending on the structure of the data it may be advantageous
to not use perceptrons but instead another type of neuron which uses a non-
linear ’decision surface’ to separate classes. Such neurons are called higher-
order neurons. There has been a lot of effort to design higher-order neurons
for different applications. For example, there are hyperbolic neurons [2], tensor
neurons [7] and hyperbolic SOMs [9]. Typically, the more complex the decision
surface a neuron has is, the higher its computational complexity. It is hoped

This work has been supported by DFG Graduiertenkolleg No. 357 and by EC Grant
IST-2001-3422 (VISATEC).

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 469-474



that a complex decision surface will allow to solve a task with fewer neurons.
However, the computational complexity of each neuron should not offset this
advantage.

In this paper we present a simple extension of a perceptron, such that its
decision surface is not a hyperplane but a hypersphere. The representation
used is taken from a conformal space representation introduced in the context
of Clifford algebra [6]. The advantage of this representation is that only a
standard scalar product has to be evaluated in order to decide whether an
input vector is inside or outside a hypersphere. That is, the computational
complexity stays low, while a non-linear decision plane is obtained. This will be
explained in some detail later on. The main advantages of such a hypersphere
neuron over a standard perceptron are the following:

• A hypersphere with infinite radius becomes a hyperplane. Since the hy-
persphere representation used is homogeneous, hyperspheres with infinite
radius can be represented through finite vectors. Therefore, a standard
perceptron is just a special case of a hypersphere neuron.

• The VC-dimension [1] of a hypersphere neuron for a 1-dimensional input
space is three and not of two, as it is for a standard perceptron. However,
for higher input dimensions, the VC-dimensions of a hypersphere neuron
and a standard perceptron are the same.

Although the VC-dimensions of a hypersphere neuron and a standard per-
ceptron are the same for input dimensions higher than one, it is advanta-
geous to use a hypersphere neuron, if the classification of the data is ori-
entation invariant about some point in the input space. For example, let
{xi} ⊆ R

n and {yi} ⊆ R
n denote the input vectors of two different classes.

If there exists a point c ∈ R
n, such that maxi |xi − c| < mini |yi − c| or

maxi |yi − c| < mini |xi − c|, then the classification of the data is basically
a 1-dimensional problem, and the two classes can be separated by a single
hypersphere, independent of the input dimension. A multi-layer hypersphere
perceptron (MLHP), therefore separates the input space into regions where the
classification is orientation invariant. Figure 1 gives an example of this.

The remainder of this paper is structured as follows. First the representa-
tion of hyperspheres used is described in some more detail. Then some impor-
tant aspects concerning the actual implementation of a hypersphere neuron in
a single- and multi-layer network are discussed. Finally, some conclusions are
drawn from this work.

2 The Representation of Hyperspheres

There is not enough space here to give a full treatment of the mathematics
involved. Therefore, only the most important aspects will be discussed. For a
more detailed introduction see [5, 6].

Consider the Minkowski space R
1,1 with basis {e+, e−}, where e2

+ = +1
and e2

− = −1. The following two null-vectors can be constructed from this

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 469-474



Figure 1: Learning of two different data sets by two 2-layer networks. Data points
of one class lying as a compact cluster within the other class. The separation is done
with two (left) respectively three (right) hypersphere neurons in the first layer and
one neuron in the second layer. A classical MLP with two layers needs at least four
neurons in the first layer.

basis, e∞ := e− + e+ and e0 := 1
2 (e− − e+), such that e2

∞ = e2
0 = 0 and

e∞ ·e0 = −1. Given an n-dimensional Euclidean vector space R
n, the conformal

space R
n+1,1 = R

n ⊗R
1,1 can be constructed. Such a conformal space will also

be denoted as ME
n ≡ R

n+1,1. A vector x ∈ R
n may be embedded in conformal

space as
X = x + 1

2 x2 e∞ + e0, (1)

such that X2 = 0. It may be shown that this embedding represents the stere-
ographic projection of x ∈ R

n onto an appropriately defined projection sphere
in ME

n. Note that the embedding is also homogeneous, i.e. αX, with α ∈ R,
represents the same vector x as X. This also motivates the nomenclature e0

and e∞, since e0 represents the origin of R
n and e∞ the point at infinity. A

null-vector in ME
n whose e0 component is unity, is called normalized. Given

a second normalized null-vector Y = y + 1
2 y2 e∞ + e0, it can be shown that

X · Y = −1
2 (x − y)2. That is, the scalar product of two null-vectors in con-

formal space, gives a distance measure of the corresponding Euclidean vectors.
This forms the foundation for the representation of hyperspheres. A normal-
ized hypersphere S ∈ ME

n with center Y ∈ ME
n and radius r ∈ R is given by

S = Y − 1
2 r2 e∞, since then

X · S = X · Y − 1
2 r2 X · e∞ = − 1

2 (x − y)2 + 1
2 r2, (2)

and thus X · S = 0 iff |x − y| = |r|. That is, the scalar product of a null-
vector X with a normalized hypersphere S is negative, zero or positive, if X
is outside, on or inside the hypersphere. Scaling the normalized hypersphere
vector S with a scalar does not change the hypersphere it represents. However,
scaling S with a negative scalar interchanges the signs that indicate inside and
outside of the hypersphere.

The change in sign of X · S between X being inside and outside the hyper-
sphere, may be used to classify a data vector x ∈ R

n embedded in ME
n. That

is, by interpreting the components of S as the weights of a perceptron, and
embedding the data points into ME

n, a perceptron can be constructed whose
decision plane is a hypersphere.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 469-474



From the definition of a hypersphere in ME
n it follows that a null-vector

X ∈ ME
n may be interpreted as a sphere with zero radius. Similarly, a vector

in ME
n with no e0 component represents a hypersphere with infinite radius,

i.e. a plane. In fact, given two normalized null-vectors X,Y ∈ ME
n, X − Y

represents the plane located half way between x and y with normal x−y. Such
a plane still has a sidedness, that is, the scalar product of a null-vector with a
plane is either positive, zero or negative depending on whether the test vector
is off to one side, on the plane or off to the other side. Therefore, a hypersphere
neuron may also represent a hyperplane.

3 Implementation

The propagation function of a hypersphere neuron may actually be imple-
mented as a standard scalar product, by representing the input data as follows.
Let a data vector x = (x1, x2, . . . , xn) ∈ R

n be embedded in R
n+2 (not ME

n)
as �X = (x1, . . . , xn,−1,− 1

2 x2) ∈ R
n+2. Then, representing a hypersphere

S = c + 1
2 (c2 − r2)e∞ + e0 ∈ ME

n in R
n+2 as �S = (c1, . . . , cn, 1

2 (c2 − r2), 1),
one finds that X ·S = �X · �S. During the training phase of a hypersphere neuron,
the components of �S are regarded as independent, such that �S may simply be
written as �S = (s1, . . . , sn+2). This embedding also allows hyperspheres with
imaginary radii. However, since such a hypersphere cannot include any points,
it does not produce spurious solutions. It may indeed contribute to a successful
learning.

Therefore, a hypersphere neuron may be regarded as a standard perceptron
with a second ’bias’ component. Of course, the input data must be of a par-
ticular form. That is, after embedding the input data in R

n+2 appropriately, a
decision plane in R

n+2 represents a decision hypersphere in R
n. In this respect,

it is similar to a kernel method, where the embedding of the data in a different
space is implicit in the scalar product.

The computational complexity of a hypersphere neuron is as follows. Apart
from the standard bias, which is simply set to unity, the magnitude of the
input data vector has to be evaluated. However, for a multi-layer hypersphere
network, this magnitude only has to be evaluated once for each layer. In terms
of complexity this compares to adding an additional perceptron to each layer
in a MLP.

It follows from equation (2), that the value of the scalar product of a data
point with a normalized hypersphere is bounded by the radius of the hyper-
sphere for data points lying within (class I), but it is not limited for data
points lying outside (class O). Since the result of this scalar product is the
input to an activation function, the type of activation function appears to have
an influence on how large the radius of a hypersphere will tend to be. However,
since the weights of a hypersphere neuron are treated as independent compo-
nents, they represent an un-normalized hypersphere. The overall scale factor
of the hypersphere vector then allows the scalar product of the hypersphere

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 469-474



with points lying within it to take on arbitrarily large values.
For example, denote by X ∈ ME

n the representation of data point x ∈ R
n,

and denote by S ∈ ME
n the representation of a hypersphere neuron with center

c ∈ R
n, radius r ∈ R

+ and scale κ ∈ R\{0}. Furthermore, let the activation
function of the hypersphere neuron be the sigmoidal function σ(λ, z) = (1 +
e−λz)−1. Training the hypersphere neuron to classify x as belonging to I then
means to vary c, r and κ, such that σ(λ,X ·S) > 1− ε, where ε ∈ R

+ gives the
decision threshold. If x is to be classified as belonging to O, then one demands
that σ(λ,X · S) < ε. With respect to the radius this means that

r2 >
2
λκ

ln
1 − ε

ε
+ (c − x)2 if x ∈ I, (3)

r2 <
2
λκ

ln
ε

1 − ε
+ (c − x)2 if x ∈ O, (4)

It can be seen that for fixed ε, c and κ, the radius of the hypersphere depends
on the parameter λ of the sigmoid function. The effect of this is that the smaller
λ, the larger the radius of the hypersphere tends to be. Note that the above
equations are valid for κ > 0, whence X ·S = 1

2 |κ| (r2− (x−y)2). However, for
κ < 0, this becomes X · S = 1

2 |κ| ((x − y)2 − r2), such that data points inside
S belong to class O and outside S to class I.

We can introduce a measure for the reliability of a particular data point
by extending data points in the following way. Given a data point x with
some confidence measure rconf , it is embedded in ME

n as Xconf = x + 1
2 (x2 +

r2
conf) e∞ + e0. This is equivalent to a hypersphere with imaginary radius. It

will therefore be called an imaginary hypersphere. The scalar product between
a hypersphere S and X then yields,

S · Xconf = 1
2

(
r2 − (

(c − x)2 + r2
conf

))
. (5)

That is, the vector x appears to be further away from the center c than it actu-
ally is. Therefore, a training algorithm will try to place a decision hypersphere
such that x lies further to the inside of the hypersphere’s surface, than without
confidence. This effect is shown in figure 2.

4 Conclusions

In this paper a higher-order neuron was presented which has the effect of plac-
ing a decision hypersphere in the input space, whereas a standard perceptron
uses a hyperplane to linearly separate the input data. It was shown that a
hypersphere neuron may also represent a hypersphere with infinite radius, i.e.
a hyperplane, and thus includes the case of a standard perceptron. Advantages
that may be gained by using hypersphere neurons, are the possibility to classify
compact regions with a single neuron in n-dimensions, while the computational
complexity is kept low. The synthetic experiments presented in this paper give
examples where the use of a hypersphere neuron is advantageous.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 469-474



Figure 2: Position of the decision hypersphere can be influenced by confidence.
Left picture shows the position of decision hypersphere (black circle) for uniformly
distributed confidences (grey circles). After increasing of confidence for left bottom
point, the decision circle is moved in such a way, that the affected point is placed
further inside.

The concept of the hypersphere neuron may be extended to other geomet-
ric entities. In conformal space ME

n a hypersphere basically represents an
(n−1)-dimensional subspace. Using the Clifford algebra of ME

n, also lower
dimensional subspaces can be expressed in a linear fashion, which could extend
the set of decision surfaces available.

References

[1] Y. S. Abu-Mostafa. The Vapnik-Chervonenkis dimension: Information versus
complexity in learning. Neural Computation, 1(3):312–317, 1989.

[2] S. Buchholz and G. Sommer. A hyperbolic multilayer perceptron. In S.-I. Amari,
C.L. Giles, M. Gori, and V. Piuri, editors, International Joint Conference on
Neural Networks, IJCNN 2000, Como, Italy, volume 2, pages 129–133. IEEE
Computer Society Press, 2000.

[3] G. Cybenko. Approximation by superposition of a sigmoidal function. Mathemat-
ics of Control, Signals and Systems, 2:303–314, 1989.

[4] K. Hornik. Approximation capabilities of multilayer feedforward neural networks.
Neural Networks, 4:251–257, 1990.

[5] H. Li, D. Hestenes, and A. Rockwood. Generalized homogeneous coordinates
for computational geometry. In G. Sommer, editor, Geometric Computing with
Clifford Algebra, pages 27–52. Springer-Verlag, 2001.

[6] H. Li, D. Hestenes, and A. Rockwood. A universal model for conformal geometries.
In G. Sommer, editor, Geometric Computing with Clifford Algebra, pages 77–118.
Springer-Verlag, 2001.

[7] H. Lipson and H.T. Siegelmann. Clustering irregular shapes using high-order
neurons. Neural Computation, 12(10):2331–2353, 2000.

[8] M. Minsky and S. Papert. Perceptrons. Cambridge: MIT Press, 1969.

[9] H. Ritter. Self-organising maps in non-Euclidean spaces. In E. Oja and S. Kaski,
editors, Kohonen Maps, pages 97–108. Amer Elsevier, 1999.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 469-474




