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Abstract. In this paper we use neural networks to verify the similarity
of real astronomical images to predefined reference profiles. We use an
innovative technique to encode images that associates each of them with
its most convenient moments, evaluated along the {x, y} axes; in this
way we obtain a parsimonious but effective method with respect to the
usual pixel by pixel description.

1 Introduction

The multilayer perceptron, the first largely successful neural network model,
has been largely used for a great variety of applications after its presentation
by D. Rumelhart et al. [3]; recently some attempts to use neural networks in
astronomy have been performed, mainly in the field of adaptive optics: the
reader can find details in the papers by Lloyd-Hart et al. [2] and Wizinowich
et al. [4].

The problem we want to face is that of verifying the compatibility of the
real images with some reference profiles; also it’s really important the capability
of extracting from the data some parameters suitable for a new definition of
the template, in order to improve its similarity to the data. Self-calibration
of the data, by deduction of the parameters for optimisation of the image
template, is a key element in the control of the systematic effects in the position
measurement.

Our objective is the implementation of a tool for analysis of realistic images
and deduction of a set of aberration parameters able to describe their discrep-
ancy with respect to the ideal, non-aberrated image; this is obtained using a
sigmoidal neural network with one hidden layer, trained by the usual backprop-
agation algorithm and training and test sets derived from opportunely codified
instances.
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Figure 1: Airy image (solid line) and aberrated image (dashed line).

The paper is structured in three sections: in Section 2 we discuss the image
characterisation problem addressed in the present work, both in a general case
and in the simplified framework adopted here. In Section 3 we describe the
data set generation, its processing and the current results.

2 Imaging in Astronomy

The Fraunhofer diffraction theory, described in many textbooks on optics (see
[1], from which the notation is derived), is the basic framework in which to
develop our problem. We only remind here that the ideal monochromatic
image of a point-like source at wavelength λ, obtained from an unobstructed
circular pupil of diameter D, without aberrations, is radial and described by
the Airy function:

I (r) = k [2J1 (r)/r]2 , (1)

where J1 is the Bessel function of the first kind, order one, and r = D/2 is
the aperture radius; the Airy function is shown by the solid line in Fig. 1,
compared with an aberrated image (dashed line) affected by one wavelength
of coma (see below). The Airy radius, enclosing the central lobe, is 1.22λ/D.
In a simplified framework the perturbations introduced on the image by real
optics can be described as a perturbation of the wavefront by the five classical
Seidel aberrations.
The wavefront deviation from planarity is expressed by the phase aberration
Φ, which defines the pupil function eiΦ, and the diffraction image on the focal
plane by the square modulus of the Fourier Transform:

I (r, φ) =
k

π2
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Figure 2: Variation of the x variance vs. each aberration.

where ρ and θ are the pupil coordinates (normalised radius and azimuth),
whereas r and φ are the image coordinates. If Φ = 0 (non-aberrated case),
eq.(1) is retrieved.

In the simplified framework of the five classical Seidel aberrations, i.e. As:
Spherical aberration, Ac: Coma, Aa: Astigmatism, Ad: Defocus (field cur-
vature) and At: Distortion (t = tilt), the phase aberration is generated by
superposition of the five terms:

Φ (ρ, θ) =
2π

λ

[
Asρ

4 + Acρ
3 cos θ + Aaρ2 cos2 θ + Adρ

2 + Atρ cos θ
]

; (3)

by replacement of eq.(3) in eq.(2), we see that the relation among the aberra-
tions and the image is nonlinear.

We consider the regime of “small” or “acceptable” aberrations, correspond-
ing to the classical Rayleigh criterion of one quarter of wavelength ([−0.25, 0.25]),
for the test set. We select for training a slightly larger interval [−0.3, 0.3], to
avoid potential boundary problems. Over a larger aberration range, the image
quality degrades significantly, and we are most interested in network classifica-
tion capability in the case of small image perturbations. The Seidel aberrations
are the targets of our network, therefore the output vector of the neural net-
work is five-dimensional, whereas the encoding of the input image is discussed
below.

2.1 Image encoding

The encoding scheme we adopt for the images allows extraction of the desired
information for classification, without resorting to the expensive classical pixel
by pixel technique. Each input image is described by the centre of gravity and
the first central moments, up to the fourth order:
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µx =
∫

dx dy x·I(x,y)∫
dx dy I(x,y)

µy =
∫

dx dy y·I(x,y)∫
dx dy I(x,y)

σ2
x =

∫
dx dy (x−µx)2·I(x,y)∫

dx dy I(x,y)
σ2

y =
∫

dx dy (y−µy)2·I(x,y)∫
dx dy I(x,y)

M(i, j) =
∫

dx dy ( x−µx
σx

)i
(

y−µy
σy

)j ·I(x,y)∫
dx dy I(x,y)

(4)

The central moments are much less sensitive than the image itself to the
effects related to the finite pixel size; besides, they can be deduced also from
the low resolution images, without the need for high resolution detectors. The
central moments have an immediate physical meaning:

• the first order moment provides the centre of gravity of the image

• the second order central moment is the mean square width

• the third order central moment (skewness) is an index of the image asym-
metry

• the fourth order central moment (kurtosis) is an index of how much
peaked is the distribution; for a Gaussian, its value is 3

We have now to verify the sensitivity of these quantities to aberrations; for
instance the x square width is shown in Fig. 2, where the values obtained for
independent variation of each aberration, are plotted side by side for ease of
comparison over the selected range [−0.3λ, 0.3λ]. It appears to be sensitive
mostly to defocus, much less to spherical aberration and coma, and insensitive
to astigmatism and distortion. Similarly, we evaluate the behaviour of the other
low order moments with respect to variations of each aberration, selecting the
suitable input variables for our neural network. The ten selected moments
are σ2

x, σ2
y, M(0, 3), M(0, 4), M(1, 1), M(2, 1), M(1, 2), M(3, 1), M(1, 3) and

M(2, 2), evaluated in two different image points. Therefore, the input vector
to the neural network has 20 components.

3 Results

In this section we describe in more detail the generation of the training and
test sets and the results of neural network evaluation. As described above,
each input/output instance is represented by the 20 moments plus the five
aberrations. The image is built accordingly to eq.(2) and (3), starting from each
set of five aberration values, and used to compute the corresponding moments,
according to eq.(4).

The training set is a list of T = 2500 instances. We use a denser distribution
of the points along the individual axes of the target space, placing 100 samples
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Figure 3: Neural Network Performances.

on each axis (variation of a single aberration at a time); the remaining 2000
points are randomly distributed, i.e. each variable is independently chosen.

The test set is built in a similar way, picking independent variation for each
output variable, building the image and evaluating the input variables to the
network. A total of 2500 test instances has been generated.

A sigmoidal neural network with an hidden layer made by 100 units was
optimised on the training set and verified on the test set; the training required
8000 iterations. Because the desired behaviour of the neural network is the
computation, over the test set, of output values coincident with the pre-defined
target values, the plot of output vs. target, shown in Fig. 3, should be ideally
a straight line (y = a + bx) at angle π/4, passing for the origin, (a = 0, b = 1).
We compute the best fit parameters, their errors, the RMS discrepancy σ of the
network output with respect to the targets, and the percentage of test instances
within the confidential interval ±3σ; the results are shown in Tab. 1.

We remark that the outputs computed from the network are quite consis-
tent with the desired test targets; coma and distortion are the best recognized
aberrations, whereas spherical aberration, astigmatism and defocus are affected
by larger systematic errors and larger dispersion.
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Linearfits σ ±3σ
Spherical a = 0.0126 σa = 0.0006 0.016 97.8

b = 0.975 σb = 0.004
Coma a = 0.00069 σa = 0.00002 0.0012 98.6

b = 0.9990 σb = 0.0001
Astigmatism a = −0.0009 σa = 0.0003 0.008 98.4

b = 0.986 σb = 0.002
Defocus a = 0.0024 σa = 0.0003 0.008 98.1

b = 1.004 σb = 0.002
Distorsion a = −0.00030 σa = 0.00002 0.001 99.4

b = 0.9983 σb = 0.0001

Table 1: Network output evaluation: linear fit of output vs. target, RMS
discrepancy (σ) and percentage of results within 3σ.

4 Conclusions

In this paper we use a neural network to reconstruct aberrations in astronomical
images. We test both the possibility of encoding the problem in a compact set
of image descriptors with an immediate physical meaning, i.e. the moments,
and the performance of the network.
We achieve good results, confirming that the problem can be solved by this
technique.
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