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Abstract：We consider two layered binary state neural networks in which
cellular topographic self-organization occurs under correlational learning.
The main result is that for separable input relations, a mapping is
topographic if it is stable and vice versa.

1. Introduction

   Topographic mapping is a mapping which associates neighboring excitations at
afferent cells with neighboring outputs at efferent cells.  Actually, such topographic
mappings as retinotopic, somatosensory, and tonotopic mappings are commonly
formed in self-organized fashion at various parts of vertebrates.
   We consider Willshaw-Malsburg type networks [Willshaw-Malsburg 1976] whose
architecture is defined by a pair of input and output layers with connection weights.
Learning scheme is based on a modified winner-take-all idea and generalized Hebb type
correlational rule.  In our previous works [Sakamoto and Kobuchi 2000, 2002;
Sakamoto, Seki, and Kobuchi 2002] we considered two layered networks in which
each input and output layer is represented by an undirected graph.  A pair of cells in a
layer is related when there is an edge between them in the graph representation.
   Most of the previous models including ours reflect the idea of so-called local
excitation inputs.  We here treat a topographic mapping formation model which can
treat any binary input patterns.  In these frameworks, we characterize the stability of
winner function under correlational learning and relate it with topographic mappings.

  
2. The Model

   Le t  VI  = {1, 2, ..., n} denote the set of input units and VO  = {1, 2, ..., m}, the
set of output units.  A synaptic weight from an input unit j to an output unit i is a
real number between 0 and 1 given as wij ∈[0,1].  Then, for an output unit i, we

have a synaptic weight vector w i = (wi1 , wi2 , ..., win ).  The entire synaptic weights
can be represented by a weight matrix W  = [ wij ].  An input pattern X  is a

nonempty subset of VI , and an input set I  is a non-empty set of input patterns.
Each input unit j (1 ≤  j ≤  n) assumes a binary state xj ∈{0,1}, and each input

pattern X  determines  an input vector x=(x1 , x2 ,  . . . , xn ) by xk =1 if k∈ X  and
xk =0 otherwise.  We use an input pattern X  and the corresponding input vector x
interchangeably.  The value of an output unit i (1 ≤ i ≤ m) is a real number yi  and,
for an input vector x , it is given by yi =w i xT, where xT is the transposed vector of x .  
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   The closeness among input (or output) units will be represented by an input (or
output) neighborhood relation defined on VI  (or VO , respectively): EI  ⊆ VI × VI

and EO  ⊆ VO × VO .   I f  ( j1 , j2 )∈ EI  (or ( i1 , i2 )∈ EO), j1 and j2 (or i1 , i2 ) are said
to be connected.  The neighborhood relations EI  and EO  are both assumed to be
reflexive and symmetric.  Discarding the self loops, we can regard (VI , EI ) and
(VO , EO) as undirected graphs and call them an input graphG I  and an output graph
GO , respectively.  From these neighborhood relations, we can define an input
neighborhood function I  and an output neighborhood function O which, for a given
unit, return its neighbors; I (j) = { k | (j, k)∈ EI  } and O (i) = { l | (i, l)∈ EO  }.
We also extend the domain of I from input units to input patterns by I ( X ) = { k |
j∈ X , (j, k)∈ EI  }.
   Now we define a network as N = ( G I , GO , I , W ), where I  is an input pattern set
and W  is the set of all weight matrices.  In this note, W  is the set of all m × n
matrices [wij ], where wij ∈[0,1]. With a network N =(G I , GO , I , W ), given a

weight W ∈W and an input pattern X ∈ I , we have a corresponding output vector y=
( y1, y2 , ..., ym ).  Here we adopt a winner-take-all rule, that is, we consider a winner
output unit from y .  For a fixed W ∈W, this correspondence can be considered as a
function f : I →VO , i.e., f ( X) = i  where yi  = Max{ y1, y2 , ..., ym }.  We call f  a
winner function.  In general, f  varies depending onW .  Thus we have a function

F  : W→VO
I .  On the other hand, we can think of the set of all W ∈W that generate

a given f  and will denote it as W f .

   Let's fix W ∈W temporarily. When an input pattern X ∈ I  is given, for each input
unit j (1 ≤  j ≤  n), we consider a binary input neighbor state b j ∈{0,1} which

designates  whether  the  unit is in the neighborhood of an input pattern or not:
b j  = 1 if j∈ I ( X ) and b j  = 0 otherwise.  For an output unit i (1 ≤  i ≤  m), we

consider  similarly a binary winner neighbor state vi∈{0,1} which represents
whether the unit is in the neighborhood of the winner or not:  vi  = 1 if i∈ O ( f ( X) )
and vi  = 0 otherwise.
   Now we are ready to define the following learning scheme to change the synaptic
weights in discrete time steps.  If we denote relevant values at time t using t as a
parameter, the synaptic weight at time t +1, wij (t+1), is determined from that of time

t, a learning rate α at time t, and a learning rule function δ by the following:

wij (t +1) = wij (t) + α(t)(δ(b j (t),vi (t)) -wij (t))

where α(t) is a real number in (0,1) and δ : {0,1} × {0,1}→[0,1].  The learning rule
function δ represents the amount of weight changes depending on the combination of
input and output state values.  We mention here that the above relation can be
rewritten as follows:

wij (t +1) = (1-α(t))wij (t) + α(t)·δ(b j (t),vi (t)).

   Any learning rule function δ can be represented by a four-tuple of real numbers
(δ(1,1), δ(1,0), δ(0,1), δ(0,0)).  We denote the set of all learning rule functions as ∆ .
That is, ∆  = [0,1]4 .  We also assume that α(t) is a constant function, i.e., α(t) is
fixed for any t and will be written as α.   The change of the synaptic weight matrices
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can be considered as applying a weight matrix update function L  : W× I × ∆ × (0,1)
→W as follows:
   L ([wij ], X , δ, α) = [ w' ij ], where w' ij =wij +α(dij -wij ) and dij = δ(j∈ I ( X ),

i∈ O ( F ([wij ])(X )) where true equals 1 and false 0.  That is, L(W, X , , ) = W '

means that when an input X  is given to the network with weight matrix W ,  i t  is
updated toW '  under a learning rule δ and a learning rate α.  We call this process an
X -learning. Geometrically speaking, an X -learning implies thatwij  approaches to

δ(b j , vi ) at rate α. When we apply a sequence of input patterns to the network, the

resulting synaptic weight matrix can be computed by the following extension of L  :
W× I * × ∆ × (0, 1) →W defined recursively by the above together with L (W , λ, δ,
α) =W  and L (W , X1 X2 ... Xr , δ, α) = L ( L (W , X1 X2 ... Xr −1 ,δ, α), Xr ,δ, α).

3. Input Pattern Separability and Correlational Learning Rule

   Le t  N =(G I , GO , I , W ) be a network. Here we introduce a reflexive relation RI

over I .  The relation is, in fact, to denote the closeness of the input patterns in I .
That is, for Xi ∈ I  and X j ∈I , Xi  is considered to be close to X j  if and only if

(Xi , X j ) ∈RI .

Definition 1.  Let N =(G I , GO , I , W ) be a network. For any Xi ∈ I  and X j ∈I , we

define ij  as follows to represent the degree of  overlap  between Xi  and

I ( X j ) : ij  = | Xi ∩ I ( X j )| / | Xi |.

Definition 2.  Let N =(G I , GO , I , W ) be a network.  Let γ ∈ (0,1).  An input
pattern relationRI  on I  is said to be γ  -separable if for any Xi , X j ∈I ,

(Xi , X j ) ∈RI  implies ij  > γ , and (Xi , X j ) ∉RI  implies ij  < γ .
Definition 3.  Let N =(G I , GO , I , W ) be a network. For a relation RI  on I , let µ
and ρ be defined as follows.  

µ = Min { ij  | ∀( Xi , X j ) ∈ RI } and  ρ = Max { ij  | ∀( Xi , X j ) ∉ RI }.

   These  µ  and  ρ  are  used  to  characterize  γ -separability ofRI  as follows.
Lemma 1.  Let RI  be a relation over I  and let  γ ∈ (0,1),  µ ∈ [0,1], and
ρ ∈ [0,1] be real numbers as defined in Definition 3.  Then we have

RI  is γ -separable ⇔  ρ < γ  < µ.
   Now we define a class of learning rules called correlational as follows.
Definition 4.  Let N =(G I , GO , I , W ) be a network.  A learning rule δ : {0,1}2 →
[0,1] is said to be correlational if 0 < 0 < 1  where 0 = δ (0,1) – δ (0,0) and 1  =
δ (1,1) – δ (1,0).

4. X-learning and Stability of Winner Function

   Le t W  =  [ wlk ]∈W be a weight matrix where F (W ) = f .  Consider an input
patternX j  ∈ I  and apply an X j -learning to the network defined byW .  Then, assume
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that we have an updated  matrix W ' = L(W, X , , ) .  Each  entry  of W '  can be

written as follows:
w' lk = (1-α)wlk + (k ∈ I( X j ) ,  l ∈ O( f ( X j )))

   Now we evaluate output value y' l  at an output unit l  of the updated matrix W '
for an input pattern Xi ∈ I .
y' l = 

k ∈X i

∑ w' lk

=
k ∈X i

∑ { (1-α)wlk + (k ∈ I( X j ) ,  l ∈ O( f ( X j ))) }

Noting that yl  =
k ∈X i

∑ wlk

y' l  = { 
(1− )yl  + { (1,1) Xi ∩ I (X j )  + (0,1) Xi − I( X j )} if  l ∈ O( f (X j ))

(1− )yl + { (1,0) Xi ∩ I (X j )  + (0,0) Xi − I (X j )} if  l ∉ O( f ( X j ))

Since ij  = | Xi ∩ I ( X j )| / | Xi |, we can rewrite the above as

y' l  ={ 
(1− )yl  +  Xi { (1,1) ij  +  (0,1)(1 − ij )} if  l ∈ O( f (X j ))

(1− )yl  +  Xi { (1,0) ij  +  (0,0)(1 − ij )} if  l ∉ O( f (X j ))

For notational convenience, we put
c1  =| Xi |{ (1,1) ij  +  (0,1)(1 − ij ) } and

c0  =| Xi |{ (1,0) ij  +  (0,0)(1 − ij )}.

   Our concern is under what condition this X j -learning does not change the winner

function.  In other words, when F (W ' ) = f  holds ?  Let W  be any weight matrix
such that F  ( W ) = f .   Let W '  be the updated matrix of X j -learning in W .   I f

we put F  (W ' ) = f ' , then f  is X j -stable when f ' ( Xi ) = f  ( Xi ) for every Xi ∈ I .

   For an arbitrarily fixed Xi ∈ I , we have the following cases.
If O( f (X j )) =VO then y' l =  (1− )yl  + α c1  for any l ∈ {1, 2, …, m} and f ' ( Xi )

= u if f ( Xi ) = u.  That is, we have f ' ( Xi ) = f ( Xi ) in this case.  Let VS =

{k ∈VO  | O(k)  =  VO} . Then if f ( X j )∈VS , f  is X j -stable. On the other hand,

if f ( X j )∈VO -VS  then y' l =  (1− )yl  + α c1  when l ∈ O( f (X j ) ) and

y' l =  (1− )yl  +α c0  when l ∉ O( f (X j )) .
When f ( Xi ) ∈ O( f (X j ))  , f ' ( Xi ) =  f (Xi )  holds if c1 ≥ c0  which means

(1,1) ij  +  (0,1)(1 − ij )  ≥  (1,0) ij  +  (0,0)(1 − ij ).
Similarly, when f ( Xi ) ∉ O( f (X j )) , f ' ( Xi ) =  f (Xi )  if c0 ≥ c1  which means

(1,0) ij  +  (0,0)(1 − ij ) ≥  (1,1) ij  +  (0,1)(1 − ij ) .
   The above inequality conditions can be rewritten as follows.
Since c1  – c0  = Xi { 1 ij +  0 (1− ij )}

c1  >c0  ⇔  1 ij +  0 (1− ij )  > 0.

   To sum up the above argument, we have the following results.
Lemma 2. After an X j -learning, for any Xi ∈  I , f ' ( Xi ) =  f (Xi )  holds

If O( f (X j )) =  VO or

else if 1 ij +  0 (1− ij )  ≥  0 when ( f (Xi ), f (X j )) ∈ EO  or
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else if 1 ij +  0 (1− ij )  ≤  0 when ( f (Xi ), f (X j )) ∉ EO .

 We can show that the converse to Lemma 2 also holds true and hence we have
Theorem 3.  For a networkN =(G I , GO , I , W ), let F (W ) = f  for W ∈W . For
X j ∈ I , f  is X j –stable if and only if the followings hold: O( f (X j )) =  VO  or

   For any Xi ∈ I ,
( f (Xi ), f (X j )) ∈ EO  ⇒  1 ij +  0 (1− ij ) ≥ 0

( f (Xi ), f (X j )) ∉ EO  ⇒  1 ij +  0 (1− ij ) ≤  0 .

Definition 5. Let N =(G I , GO , I , W ) be a network.  A winner function f : I →VO  is

said to be stable with respect to δ ∈ ∆ if, for any X j ∈I , W ∈W f , and α∈(0,1), we

have F(L(W, X j , , )) = f .

   As a Corollary to Theorem 3 we have the following characterization  of  stable
winner functions.
Corollary.  f : I →VO  is stable with respect to δ ∈ ∆ iff the following holds:
   F o r ∀X j ∈I  such that f ( X j ) ∈VO − VS , and for∀X i ∈I

( f (Xi ), f (X j )) ∈ EO  ⇒ 1 ij + 0(1 − ij ) ≥ 0

( f (Xi ), f (X j )) ∉ EO  ⇒ 1 ij + 0(1 − ij ) ≤ 0.

5.Topographic Mappings and -Separable Relations

   Topographic mappings are the mappings which preserve topologies of input and
output spaces.  In our framework, a basic definition of being topographic goes as
follows.
Definition 6.  f : I →VO  is said to be topographic with respect to RI  and EO  iff the
following holds:
   ∀X j ∈I  such that f ( X j ) ∈VO − VS  and for∀X i ∈I

(Xi , X j ) ∈RI  ⇔  ( f (Xi ), f (X j )) ∈ EO

   Now we are ready to prove the following main theorem of this paper.
Theorem 4.  Let δ ∈ ∆ be correlational and let RI  be 0 /( 0 − 1) –separable. Then
f : I →VO  is topographic iff it is stable with respect to δ ∈ ∆.

   First, note the following lemma, which is a direct application of Definition 2
when = 0 /( 0 − 1) .
Lemma 5.  Let δ ∈ ∆ be correlational.  Then RI  is 0 /( 0 − 1) –separable iff

(Xi , X j ) ∈RI ⇒ 1 ij + 0(1 − ij ) >0

(Xi , X j ) ∉RI ⇒ 1 ij + 0(1 − ij ) <0.

   Now a proof of the main theorem is given below.
   Le t  δ ∈ ∆ be a correlational learning rule. And let RI  be 0 /( 0 − 1) –separable.
I) Assume that f : I →VO  is topographic.  Then for∀X j ∈I  such that

f ( X j ) ∈VO − VS and ∀X i ∈I

(Xi , X j ) ∈RI ⇔ ( f (Xi ), f (X j )) ∈ EO  by definition.

( f (Xi ), f (X j )) ∈ EO  ⇒ (Xi , X j ) ∈RI ⇒  1 ij + 0(1 − ij ) >0
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( f (Xi ), f (X j )) ∉ EO  ⇒ (Xi , X j ) ∉RI ⇒  1 ij + 0(1 − ij ) <0

Then a fortiori
( f (Xi ), f (X j )) ∈ EO ⇒  1 ij + 0(1 − ij ) ≥ 0

( f (Xi ), f (X j )) ∉ EO ⇒  1 ij + 0(1 − ij ) ≤ 0,

which means f  is stable.
II) Assume that f : I →VO  is stable with respect to δ ∈ ∆.  For∀X j ∈I  such that

f ( X j ) ∈VO − VS  and∀X i ∈I

( f (Xi ), f (X j )) ∈ EO  ⇒  1 ij + 0(1 − ij ) ≥ 0

( f (Xi ), f (X j )) ∉ EO  ⇒  1 ij + 0(1 − ij ) ≤ 0.

Since  is correlational and RI  is 0 /( 0 − 1) –separable, we have
(Xi , X j ) ∈RI  ⇒  1 ij + 0(1 − ij ) >0

(Xi , X j ) ∉RI  ⇒  1 ij + 0(1 − ij ) <0.

If 1 ij + 0(1 − ij )  >0 and ( f (Xi ), f (X j )) ∉ EO  holds, then 1 ij + 0(1 − ij ) ≤ 0

and contradiction occurs.  Thus, 1 ij + 0(1 − ij ) >0 implies ( f (Xi ), f (X j )) ∈ EO .

That is,
(Xi , X j ) ∈RI ⇒ ( f (Xi ), f (X j )) ∈ EO  and similarly

(Xi , X j ) ∉RI ⇒ ( f (Xi ), f (X j )) ∉ EO

which means f  is topographic.

6. Concluding Remarks

   We considered  a  topographic mapping formation model in Willshaw-Malsburg
type networks which are less studied but seem biologically more relevant.[Van Hulle
2000]  Our learning method is of generalized Hebb type with parameterized
correlational scheme.
   The main results are

1) If closeness relations are given, it can be used to define separability of input
patterns.

2) Under correlational learning and separable input relations, a mapping is
topographic if it is stable and vice versa.

   Since topographic mappings can be utilized as pattern classifier, the above general
results give a rigorous way to predict an asymptotic categorization of input patterns
with closeness relations.
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