ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 119-124

Cellular Topographic Self-Organization
under Correlational Learning

S. Sakamoto?, S. Seki?, and Y. Kobuchi*
1)Department of Electronics and Informatics, Ryukoku Univ., Seta
2)Department of Computer Science, California State Univ., Fresno

Abstract We consider two layered binary state neural networks in which
cellular topographic self-organization occurs under correlational learning.
The main result is that for separable input relations, a mapping is
topographic if it is stable and vice versa.

1. Introduction

Topographic mapping is a mapping which associates neighboring excitations at
afferent cells with neighboring outputs at efferent cells. Actually, such topographic
mappings as retinotopic, somatosensory, and tonotopic mappings are commonly
formed in self-organized fashion at various parts of vertebrates.

We consider Willshaw-Malsburg type networks [Willshaw-Malsburg 1976] whose
architecture is defined by a pair of input and output layers with connection weights.
Learning scheme is based on a modified winner-take-all idea and generalized Hebb type
correlational rule.  In our previous works [Sakamoto and Kobuchi 2000, 2002;
Sakamoto, Seki, and Kobuchi 2002] we considered two layered networks in which
each input and output layer is represented by an undirected graph. A pair of cellsina
layer is related when there is an edge between them in the graph representation.

Most of the previous modelsincluding oursreflect the idea of so-called loca
excitation inputs. We here treat a topographic mapping formation model which can
treat any binary input patterns. In these frameworks, we characterize the stability of
winner function under correlational learning and relate it with topographic mappings.

2. TheModd

Let V, ={1, 2, ..., n} denotethe set of input unitsand Vy ={1, 2, ..., m}, the
set of output units. A synaptic weight fr0|:n an input unit j to an output unitiisa
real number between 0 and 1 given as w;; | [0,1]. Then, for an output unit i, we
have a synaptic weight vector w; = (wjq,W;,, ...,W;,). The entire synaptic weights
can be represented by a weight matrix W = [w;]. An input pattern X is a
nonempty subset of V,, and an input set | isanon-empty set of input patterns.
Eachinput unit j (1 £ j£ n)assumes abinary state x,-T {0,1}, and each input
pattern X determines an input vector X=(X;, X, ..., X5) by x =1 if kI X and
Xk =0 otherwise. We use an input pattern X and the corresponding input vector x
interchangeably. The value of an output unit i (L£ i £ m) isareal number y, and,
for an input vector x, it isgiven by y =w;xT, wherex T isthe transposed vector of x.
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The closeness among input (or output) units will be represented by an input (or
output) neighborhood relation defined on V, (or Vg, respectively): E | V," V,

and Eo I Vo  Vo. If (i, ) E (or (ig,ip) Eo), hhandjp(or iy, iz) aresaid
to be connected. The neighborhood relations E; and Eg are both assumed to be
reflexiveand symmetric. Discarding the self loops, we can regard (V,, E) ad
(Mo, Eo) as undirected graphs and call them an input graphG, and an output graph
Go, respectively. From these neighborhood relations, we can define an input
neighborhood functiono, and an output neighborhood function o o which, for a given
unit, return its neighbors; o, ) ={ k| (j, K E }and og@)={ I | (i, DNl Ep}.
We also extend the domain of o, from input units to input patternsby o, (X) ={ k |
it X, @, K E ).

Now we define a network asN=(G,,Gg, | ,W), wherel is an input pattern set
and W isthe set of all weight matrices. In thisnote, W isthe set of all m” n
matrices [w;;], where w;l [0,1]. With a network N=(G,,Go,1,W), given a
weight WT W and an input pattern X1 1, we have a corresponding output vector y=
(Y1, ¥2, ---» ¥m). Here we adopt a winner-take-all rule, that is, we consider a winner

output unit from y. For afixed W1 W, this correspondence can be considered as a
functionf: I® \, i.e.,, f(X)=i where yy =Max{ v, Yo, ..., ¥m}.- Wecal f a

winner function. In general, f varies depending onW. Thus we have a function
F : W® \'. On the other hand, we can think of the set of all W1 W that generate
agivenf and will denoteitas W; .

Let's fixWT W temporarily. When an input pattern X1 | is given, for each input
unit j (L £ j £ n), weconsider abinary input neighbor state b;l {0,1} which
designates whether the unit isin the neighborhood of an input pattern or not:
b; = 1if jl o,(X)and b; =0 otherwise. For an output uniti (1 £ i £ m), we
consder similarly a binary winner neighbor state v;1 {0,1} which represents
whether the unit isin the neighborhood of the winner or not: v; = 1if il oo (f(X))
and v; = 0 otherwise.

Now we are ready to define the following learning scheme to change the synaptic
weights in discrete time steps. If we denote relevant values at time t using t as a
parameter, the synaptic weight at timet +1, w; (t+1), is determined from that of time
t, alearning rate a at timet, and alearning rule function d by the following:

wij (t+1) = w; (1) + at)d(b; ), vi () -w; (1)
wherea(t) isarea numberin (0,1) and d: {0,1} * {0,1}® [0,1]. Thelearning rule
function d represents the amount of weight changes depending on the combination of
input and output state values. We mention here that the aboverelation can be
rewritten as follows:

wij (t+1) = (1-a®)w; (t) + a(t)-d(b; (1), vi(1)).

Any learning rule function d can be represented by a four-tuple of real numbers
(d(1,2), d(1,0), d(0,1), d(0,0)). We denote the set of all learning rule functions as D.
That is, D = [0,1]4. We also assume that a(t) is aconstant function, i.e., a(t) is
fixed for any t and will be written as a. The change of the synaptic weight matrices
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can be considered as applying aweight matrix update function L : W™ |~ D" (0,1)
® W asfollows: 3
L([w;], X, d, a) =[w;], where w'; =w; +a(d;-w;) and d;= d(l o, (X),
il oo (F([w; ])(X)) where true equals 1 and false 0. Thatis, L(W,X ,d,a)= W'
means that when an input X is given to the network with weight matrixW, it is
updated toW' under alearning rule d and alearning rate a. We call this process an
X-learning. Geometrically speaking, an X-learning implies thatw;; approaches to
d(b;,v;) at rate a. When we apply a sequence of input patterns to the network, the
resulting synaptic weight matrix can be computed by the following extension of L :
W™ 1*° D" (0,1) ® W defined recursively by the above together with L(W, |, d,
a)=Wand L(W,X; X... X ,d a)= L(L(W,X{X... X.1,d,a),X%,d, a).

3. Input Pattern Separability and Correlational L earning Rule

Let N=(G,,Gp,|,W) be anetwork. Here we introduce areflexive relation R
overl. Therelation is, in fact, to denote the closeness of the input patternsin| .
Thatis, forX 1 1 andX;11,X is conddered to be close toX; if and only if
X%, X)T R
Definition 1. Let N=(G,,Gp, |, W) beanetwork. Forany X1 | adX; | 1, we
define B as follows to represent the degree of overlap between X and
o (X)) Bij =X Co (X)X i
Definition 2. Let N=(G,;,Gg,|,W) bea network. Let gl (0,1). An input
pattern relationR, on | issaid to be g -separableif forany X, X; I I,

(X X)T R implies Bij > 9,and (%, X)) R implies Bij < 9.
Definition 3. Let N=(G,,Gg,|,W) be anetwork. For arelation R onl, let m
andr be defined asfollows. )

m=Min{B; |" (%, X))l R} and r=Max{8; |" (X,X;)] R}.

These m and r are used to characterize g-separability of R asfollows.
Lemma 1. LetR be a relation overl and let gl (0,1), mil [01], ad
r T [0,1] be real numbers as defined in Definition 3. Then we have

R isg-separable U r <g<m

Now we define a class of learning rules called correlational as follows.

Definition 4. LetN=(G,,Gp,|,W ) be anetwork. A learning rule d :{0,1}2®
[0,1] issaid to be correlational if vy< 0 <v; where vq=d (0,1) — d (0,0) and v, =
d(1,1) -d(1,0).

4. X-learning and Stability of Winner Function

LetW = [wy]l W be aweight matrix where F(W) =f. Consider an input
patternX; T | and apply an X; -learning to the network defined byW. Then, assume
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that we have an updated matrix W'=L(W,X ,d,a). Each entry of W' canbe
written as follows: A A
W= (Ta)wy+ad(kl o(X)), I'T oo(f(X))))
Now we evaluate output valuey, at an output unit | of the updated matrix W'
for aninput pattern X; T 1.
Yio= & wy
KT X;

Q

= & { (La)w+ad(kl oi(X)), IToo(f(X))}

kI X
Notingthatyy = & wk
kI X

1- @)y, +ad@D|X Co, (X)) +3OD|X - o (X} if 1T oo(F(X;)
1- )y +afd(LO)X G oy (X)) +3(0,0)X - o (X} if 1T oo(f(X))
Since B =|X G o, (Xj)|/| %[, we can rewrite the above as
g < Qo+ alX{panpy + 5OIW- B} if 1T oo(f(X,)
D@ o)y + dX@0)B; + 8(0,0)(L- By} if 1T oo(f (X))
For notational convenience, we put

¢ =X @D + 8(0.1)(1- i)} and

Co =X {d(1,0)B; + 8(0,0)(1- Bj)}-

Our concern is under what condition this X; -learning does not change the winner
function. In other words, whenF(W') =f holds ? Let W be any weight matrix
suchthat F (W)=1f. Let W' bethe updated matrix of X;-learningin W. If
weput F (W')=f", then f is X;-stablewhen f'(X)=f (X )foreveryX 1 I.

For an arbitrarily fixed X1 |, we have the following cases.

If oo(f(Xj))=\Vothen y,= (1-a)y + ac forany I'1 {1,2, ..., m} andf' (X)

=u iff(X) = u That is, we havef'(X) =f(X) in this case. Let V5=

{kT Vo loo(k) = Vo}. Thenif f (X;)I Vs, f isX;-stable. On the other hand,

if £ (Xj)1 Vo-Vs then ¥y, = (1- @)y +ac when |1 oo(f(X;))and

Y1 = (1- a)y +aco when IT oo(f(X))) -

When f(X) 1T oo(f(X)), f'(X) = f(X) holdsif ¢;3 ¢, which means
d(LDB; + d(0,1)(1- By) ® d(LOB; + 00,01 - Byj)-

Similarly, when f(X) 1 oo(f(X;)), f'(X) f(X) if co3 ¢ which means
d(LO)By + 8(0,00(1-By) * O(@DB; + d(0,1)(L- By)-

The above inequality conditions can be rewritten as follows.

Since ¢; — Co = [X[{viBij + vo(1- Bij)}
a >Co U wifl + vo(1- By) >0.

To sum up the above argument, we have the following results.
Lemma2. Afteran X;-learning, forany X1 1, f'(X) = f(X) holds
If oo(f(Xj)) = Vo or
eseif viBj + vo(1- By;) 3 Owhen (f(X), f(X)I E; or

yi ={

+

+
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elseif viBj + vo(l- By) £ Owhen (f(X), f(X;)I Eo.

We can show that the converse to Lemma 2 also holds true and hence we have
Theorem 3. For a networkN=(G,,Gg, |, W), letF(W) =f for WI W . For

Xj1 1, fisX;-stableif and only if the followingshold: oo(f(X;)) = Vg or
Forany X1 I,
(FOO), FONT BEo P vaByj + vo(2- Byj) 2 0
(F), FOXNT E5 P iy + vo(1- Bjj) £ 0.
Definition 5. Let N=(G,,Gq, | ,W ) be anetwork. A winner functionf: I ® Vg is
said to be stable with respect tod T Diif, forany X; 1 1, W1 W;,andal (0,1), we
have F(L(W, X;,0,a)) = f.
As a Corollary to Theorem 3 we have the following characterization of stable

winner functions. A
Corollary. f:1® V, isstablewithrespecttod | D iff thefollowing holds:

For" X;T 1 suchthat f(X;)T Vo - Vs, andfor" X; 1 I
(FX), TX)T B P iy +vo(1- B;;) 20
(FX), FODT E5 P oviBij +vo(1- Byj) £0.

5.Topographic Mappings andy -Separ able Relations

Topographic mappings are the mappings which preserve topologies of input and
output spaces. In our framework, a basic definition of being topographic goes as
follows.

Definition 6. f:1® V issaidto be topographic with respect toR, andEj iff the
following holds: .

"X;1 1 suchthat f(X)1 Vo - Vs andfor" X; 1 1

X, X)TR U (F(X), FX)T Bo

Now we are ready to prove the following main theorem of this paper.

Theorem 4. Let d1 D becorrelational and let R, be vq/(vg- vi)—Separable. Then
f:1® V, istopographic iff it is stable with respect tod T D.

First, note the following lemma, which is a direct application of Definition 2
when y =vg/(vg- vy).

Lemma5. Letd1 Dbecorrelational. ThenR, isvy/(vq- v,)—separableiff
(Xa,xj)T R P vifj +vo(l- B;)>0
(X, X)) R P vy +vo(L1- Bjj) <O.
Now a proof of the main theorem is given below.
Let dI D beacorrelationa learning rule. Andlet R, be vq/(vq- vq)—Separable.
1) Assumethat f : 1 ® Vg istopographic. Then for" X; T 1 suchthat
f(X)T Vo - Veand " X; T 1
(X, X))T R U (f(X), (X)) Ey by definition.
(FD), FOXNT B5 P (X, X)T R P viByj +vo(1- Bjj)>0
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(FO) FONT Bo P (X%, X)T R P iy +vo(L- By) <0
Then afortiori

(FX), FONT Eo P viBij +vo(1- Bij) 3 0

(FX), FOXNT Eo P viByj +vo(1- Byj) £0,
which meansf isstable.
II) Assumethat f:1® V isstablewithrespecttod D. For" X;1 | suchthat
f(X)T Vo - Vs and" X T 1

(FOG), FOGNT BEo P iy +vo(1- B;) 2 0

(FOQ), FOGNT BEo P vaByj +vo(1- By) £0.
Since & iscorrelational andR, is vq /(v - v41)—Separable, we have

(X, X)T R P iy +vo(l- Bij)>0

(X, X)) T R P viBj +vo(1- Bj) <O.
If v +vo(1- Bij) >0and (f(X), f(X; )1 Ey holds, then V1B +vo(1- Bij) £0
and contradiction occurs. Thus,viB;j +vo(1- Bj)>0implies (f(X), f(X)T E.
That is,

(X, X)T R b (f(X), f(X) Ep andsimilarly

(% X)T R P (F(X), F(X)T Eo

which meansf istopographic.

6. Concluding Remarks

We considered a topographic mapping formation model in Willshaw-Malsburg
type networks which are less studied but seem biologically more relevant.[Van Hulle
2000] Our learning method is of generalized Hebb type with parameterized
correlationa scheme.

The main results are

1) If closeness relations are given, it can be used to define separability of input

patterns.

2) Under correlational learning and separable input relations, a mapping is

topographic if it is stable and vice versa.

Since topographic mappings can be utilized as pattern classifier, the above general
results give a rigorous way to predict an asymptotic categorization of input patterns
with closeness relations.
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