
Self-Organizing Maps and Functional Networks

for Local Dynamic Modeling

Noelia Sánchez-Maroño∗, Oscar Fontela-Romero,
Amparo Alonso-Betanzos, Bertha Guijarro-Berdiñas

Laboratory for Research and Development in Artificial Intelligence,
Department of Computer Science, University of A Coruña,

Campus de Elviña s/n, 15071 A Coruña, Spain

Abstract. The paper presents a method for times series prediction
using a local dynamic modeling based on a three step process. In the
first step the input data is embedded in a reconstruction space using a
memory structure. The second step, implemented by a self-organizing
map (SOM), derives a set of local models from data. The third step
is accomplished by a set of functional networks. The goal of the last
network is to fit a local model from the winning neuron and a set of
neighbors of the SOM map. Finally, the performance of the proposed
method was validated using two chaotic time series.

1 Introduction

The problem of time series prediction can be viewed as a function approxima-
tion problem where the aim is to estimate a complex function f(x) by means
of another function f̂(x). There are two basic alternatives to proceed with this
approximation: global and local. In the global approach, only one model is
used to characterize the process, so f̂(x) is estimated as:

f̂(x) =
n∑

i=1

αiφi(x) (1)

where αi are coefficients and φi(x); i = 1, 2, · · · , n are basic functions. However,
if f(x) is complicated, there is no guarantee that f̂(x) will approximate it
adequately. This problem can be reduced by using the local approach where
the domain of f(x) is broken into local neighborhoods and a separate model is

This work is partially supported by the Xunta de Galicia (project PGIDT-
01PXI10503PR) and the first author is supported by a grant from Diputación de A Coruña.

∗Corresponding author. Email: noelia@mail2.udc.es

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 39-44



used for each one [3], so the overall predictive function is the union of several
local models as it is expressed in equation (2). The division of the data set
is usually carried out with some clustering or quantization algorithm such as
Self-Organizing Map (SOM) or a k-means algorithm.

f̂(x) =
m⋃

i=1

f̂i(x) (2)

In this paper, a system for local dynamic modeling based on a previous work
designed by the same authors [2] is presented. The system is composed by a
SOM, that divides the data set into smaller sets, to get several local models
and a set of functional networks [1] that approximate each local model.

2 Dynamic Modeling

Takens’ Embedding Theorem [4] proved that a sample of a dynamic system x(n)
and its delayed versions x(n) = [x(n), x(n − τ), . . . , x(n − (N − 1)τ)], where
τ is a specific time delay, can be created to get a trajectory of the system in
an euclidean space of size N without modifying the dynamic invariants of the
original system. N must be greater than 2D, where D is the dimension of the
original system. According to this theorem, exists a map f : IRN → IRN that
transforms the current reconstructed state x(n) to the next state x(n+τ). For
simplicity, we consider τ = 1, which means:

x(n + 1) = f(x(n)) (3)

Note that (3) specifies a multiple input, multiple output system. For a system
with one output, the predictive mapping: f : IRN → IR can be expressed as:

x(n + 1) = f(x(n)) (4)

Dynamic modeling implies a two-step process. The first step is to transform
the observed time series into a trajectory in the reconstruction space by using
an embedding technique. The most common one is a time delay embedding
which can practically be implemented with a delay line with the size specified
by Takens’ Embedding Theorem. The second step is to build the predictive
model (4) from the trajectory in the reconstruction space. As it was mentioned,
both local and global modeling can be used for this purpose.

3 Functional Networks

Functional networks are a generalization of neural networks that combine both
knowledge about the structure of the problem, to determine the architecture
of the network, and data, to estimate the unknown functional neurons [1]. As
it can be seen in Fig.1, a functional network consists of: a) several layers of
storing units, one layer for containing the input data (xi; i = 1...4), another

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 39-44



f(Σw7ixi)

f(Σw6ixi)

x1

x2

x3

x4

f(Σw8ixi)

x5

x6

x7

w52

w63

w73

w62

w74

w51

w85

w87

w86 x8

f1(x1,x2)

f3(x3,x4)

f2(x2,x3)

x1

x2

x3

x4

f4(x5,x6)

x5

x6

x7

(a) (b)

f(Σw5ixi)

Figure 1: (a)A neural network. (b)A functional network

for containing the output data (x7) and none, one or several layers to store
intermediate information (x5 and x6); b) one or several layers of processing
units that evaluate a set of input values and delivers a set of output values (fi)
and c) a set of directed links. Functional networks extend neural networks by
allowing neural functions fi to be not only true multiargument and multivariate
functions, but to be different and learnable, instead of fixed functions. In
functional networks, the activation functions are unknown functions from a
given family, i.e. polynomial, to be estimated during the learning process. In
addition, functional networks allow connecting neuron outputs, forcing them
to be coincident. Some differences between a neural network and a functional
network are shown in Fig. 1.

4 System Design

As the system in [2], the proposed method is composed of three blocks:

1. An embedding layer, implemented by a time delay line, to transform the
original space of the time series into a reconstruction space. The output of
this layer is a sequence of N-dimensional state vectors, x(n) = [x(n), x(n−
τ), . . . , x(n− (N − 1)τ)]T , created from the input signal.

2. A self-organizing map trained using Kohonen’s learning. The input of
this network is the pair (d(n),x(n)), where d(n) is the desired response.
If a time series prediction scenario is employed then d(n) = x(n + γτ),
where γ is a predetermined prediction step. The SOM, formed by P ×Q
neurons, will represent the system dynamics in the discrete output lattice,
but enhanced with neighborhood relationships. These neighborhood rela-
tionships of the SOM assure the desirable property of continuity among
the local models. The weights of the kth neuron of the SOM is repre-
sented by the vector wk = [w0k, w1k, . . . , wNk]T ; k = 1, . . . , P ×Q, where
w0k is associated with the input d(n) and the other N correspond to the
x(n) vector. It is important to say that once the SOM has been trained,
d(n) will not be used as input in a real environment.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 39-44



3. A set of P × Q functional networks. Each functional network k is asso-
ciated with the kth neuron of the SOM and it was used to fit each local
model from a subset of weights of the SOM. For the training process, the
following cost function was used:

Jk =
∑

t∈Tk

(εk
t )2 =

∑

t∈Tk

(dk
t − yk

t )2 (5)

where Tk is the set formed by the index of the kth neuron of the SOM
and the indexes of its NL neighbors, and the desired output dk

t is w0t. To
determine yk

t , the model shown in (6) was employed, where the polyno-
mial family is used to learn the neural functions fk

i and the coefficients of
these polynomials functions, ak

ij and a0, are the parameters to be learned.

yk
t = ak

0 +
N∑

i=1

fk
i (wit) = ak

0 +
N∑

i=1

m∑

j=1

ak
ij(wit)j

t = 1, . . . , card(Tk); k = 1, . . . , P ×Q

(6)

Once the system was trained, it will work as follows:

• The winning neuron of the SOM is determined from an input vector x(n)
obtained from the embedding layer.

• The functional network associated with this winning neuron will be acti-
vated and it will give the output related to x(n).

5 Simulations

The system proposed was validated using synthetic and real chaotic time series.
The synthetic data set employed was the Mackey-Glass chaotic series and the
real-world data set used was the laser time series from the Santa Fe Time Series
Competition [5]. The number of samples selected for training and testing in
both series was 2000 and 1000, respectively. A comparative between the method
proposed and our previous work[2] based on a SOM and a set of single layer
neural networks is shown in Table 1. It can be noticed that the normalized mean
square error (NMSE) is reduced considerably in our new approach. Moreover,
the SOM employed is simpler than the one needed in our previous work. Fig.
2 shows the results obtained for the Mackey-Glass data (subfigure 2.1) and the
laser data (subfigure 2.2). In both subfigures (a) contains the two-dimensional
attractor of the chaotic time series, (b) depicts, for the train data, the sequence
of winning neurons connected with lines showing that the SOM is able to learn
the trajectory of the time series, (c) shows the real versus the desired output
and (d) shows the series used for the test data (solid line) and the output
of the system proposed (dashed line). As it can be seen in Fig. 2.1(c) and
2.1(d), there is no difference between the real Mackey-Glass time series and the
predicted series.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 39-44



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x(n−1)

x(
n)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Neural network’s output

D
es

ire
d 

ou
tp

ut

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

x(
n)

n

(a) (b) 

(c) (d) 

2. 1: Results for Mackey-Glass Data

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x(n−1)

x(
n)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Neural network’s output

D
es

ire
d 

ou
tp

ut

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

x(
n)

n

(a) (b) 

(c) (d) 

2. 2: Results for Laser Data

Figure 2: Results for Mackey-Glass and Laser data: (a) two-dimensional at-
tractor, (b) trajectory of winning neurons in the SOM, (c) real versus desired
output and (d) observed (solid line) and predicted (dashed line) time series.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 39-44



N P ×Q NL m NMSE
Mackey −GlassData SOM + FN 7 20× 20 41 2 5.74e− 7

SOM + NN 7 25× 25 35 − 7.62e− 4
LaserData SOM + FN 5 20× 20 48 2 1.10e− 2

SOM + NN 5 30× 30 45 − 1.36e− 2

Table 1: Results for the proposed method using a SOM and Functional Net-
works(FN) and our previous method using a SOM and Neural Networks(NN).

6 Conclusion

In this work, a new method for local dynamic modeling is presented. The
proposed method uses a SOM for getting the local models and later a func-
tional network to approximate each one. Simulations over two benchmark data
demonstrated that this method is able to capture accurately the underlying
dynamics of chaotic signal. The method shows a better performance than a
previous work based on a SOM and a set of single layer neural networks.

References

[1] E. Castillo, A. Cobo, J.M. Gutierrez, and R.E. Pruneda. Functional Net-
works with Applications. A Neural-Based Paradigm. Kluwer Academic Pub-
lishers, Dordrecht, 1998.

[2] O. Fontenla-Romero, A. Alonso-Betanzos, E. Castillo, J.C. Principe, and
B. Guijarro-Berdiñas. Local modeling using self-organizing maps and single
layer neural networks. In J.R. Dorronsoro, editor, Lectures Notes in Com-
puter Science, volume 2415, pages 945–950, Heidelberg, Germany, 2002.
Springer-Verlag.

[3] S. Lawrence, A.C. Tsoi, and A.D. Back. Function approximation with
neural networks and local methods: Bias, variance and smoothness. In
P. Bartlett, A. Burkitt, and R. Williamson, editors, Australian Conference
on Neural Networks, pages 16–21. Australian National University, 1996.

[4] F. Takens. Detecting strange attractors in turbulence. In D.A. Rand and
L.S. Young, editors, Dynamical systems and Turbulence (Lecture Notes
in Mathematics), volume 898, pages 365–381, New York, 1980. Springer-
Verlag.

[5] A.S. Weigend and N.A. Gershenfeld. Time Series Prediction: Forecasting
the Future and Understanding the Past. Addison-Wesley, Reading, MA,
1994.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 39-44




