
Abstract

1 Introduction

Associative Morphological Memories for
Spectral Unmixing
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. Unlimited storage and perfect recall of noiseless real val-
ued patterns has been proved for Autoassociative Morphological Memories
(AMM). However AMM�s suffer from sensitivity to speci�c noise models,
that can be characterized as erosive and dilative noise. On the other hand,
Spectral Unmixing of Hyperespectral Images needs the prior de�nition of
a set of Endmembers, which correspond to material spectra lying on ver-
tices of a convex region covering the image data. These vertices can be
characterized as morphologically independent patterns. We present a pro-
cedure that takes advantade of the AMM�s noise sensitivity to perform
Endmember spectra selection based on this characterization.
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Multispectral sensing allows the recognition of physical materials in image pix-
els, however as these image pixels are frequently a combination of materials,
we need to decompose the pixel spectrum into their constituent material spec-
tra. Hyperespectral sensor measurements in hundreds of spectral bands allow
to perform such �spectral unmixing� [4]. The mixture of several spectra in
a single pixel may be due to the spatial resolution of the sensor that implies
that different land covers are included in the earth surface area whose radi-
ance measurement are observed as an image pixel. This situation produces
mixtures which, often, can be adequately modeled by a linear mixing model.
In this paper we assume that the linear model is correct, and we introduce an
approach that applies some properties of AMM�s to the detection in hyper-
espectral images of pixel spectra that may serve as endmembers for spectral
unmixing.

In short, Morphological Neural Networks are those that involve somehow
the maximum and/or minimum (supremum and/or in�mum) operators in their
de�nition. The Associative Morphological Memories [6], [7], [8] are the mor-
phological counterpart of the well known Hop�eld Associative Memories [2].
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2 The linear mixing model
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AMM�s are constructed as correlation matrices computed by either Min or
Max matrix product (denoted by symbols and respectively). Dual con-
structions can be made using the dual Min and Max operators. The AMM�s are
very sensitive to speci�c types of noise (erosive and dilative noise). The notion
of morphological independence and morphological strong independence was in-
troduced in [8] to formalize the construction of AMM�s robust against arbitrary
noise following the kernel approach. Brie�y, AMM�s can robustly store and re-
call morphologically strongly independent sets of patterns. As endmenbers for
spectral unmixing are morphologically independent we propose a procedure
that uses the AMM�s to detect new endmembers from an hyperspectral image.
The �learning� procedure is unsupervised and detects the endmembers in a
single pass over the image.

The structure of the paper is as follows: In section 2 we review the de�nition
of the linear mixing model. Lack of space prevents us from giving a review of
AMM�s. In section 3 we introduce our endmember selection algorithm for re-
mote sensing hyperespectral images. In section 4 we discuss some experimental
results of the proposed algorithm. In section 5 we summarize our conclusions
and we propose future work directions.

The linear mixing model [4] can be expressed as follows:

(1)

where is the -dimensional random vector that represents the pixel spec-
trum, is the matrix whose columns are the -dimension endmembers

is the -dimension fractional abundance vector, and is the
-dimensional additive sensor noise vector. The linear mixing model is sub-

jected to two constraints on the abundance coefficients. First, to be physically
meaningful, all abundance coefficients must be non-negative
Second, to account for the entire composition, the abundance coefficients must
be fully additive

The task of endmember determination is the focus of this paper. In an al-
ready classical paper [1], Craig starts with the observation that the scatter plots
of remotely sensed data are tear shaped or pyramidal, if two or three spectral
bands are considered. The apex lies in the so-called dark point. The endmem-
ber detection becomes the search for non-orthogonal planes that enclose the
data forming a minimum volume simplex, hence the name of the method. The
method is computationally expensive and requires the prior speci�cation of the
number of endmenbers. Another step to the automatic endmember detection
is the Conical Analysis method proposed in [3] and applied to target detection.
The extreme points in the data after a Principal Component transform are
the searched for endmember spectra. Another approach is the modelling by
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3 The detection of spectral endmembers
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Markov Random Fields and the detection of spatially consistent regions whose
spectra will be assumed as endmembers [5].

Once the endmembers have been determined the unmixing is the compu-
tation of the matrix inversion that gives the fractional abundance of each end-
member in each pixel spectra and, therefore, the spectral unmixing. The sim-
plest approach is the unconstrained least squared error estimation given by:

(2)

The abundance coefficients that result from this computation do not necessarily
ful�ll the non-negativity and full additivity constraints. It is possible to enforce
each constraint separately, but it is rather difficult to enforce both simultane-
ously [4]. As our aim is to test an endmember spectra selection procedure, we
will use unconstrained estimation (2) to compute the abundance images. We
will scale and shift the intensity of the abundance images to present our results.

Under a geometrical interpretation, the endmembers of a given hyperspectral
image assuming the linear mixture model correspond to the vertices of the min-
imal simplex that encloses the data points. On the other hand, the region of
the space de�ned by a set of vectors which are morphologically independent in
both the erosive and dilative senses simultaneously, is a high dimensional box
that we want to approximate the minimal simplex enclosing the data points.
Let us denote the -bands hyperspectral
image, and the vectors of the mean and standard deviations of each band
computed over the image, the noise correction factor and the set of end-
members discovered. The noise amplitude in (1) is estimated as , the patterns
are corrected by the addition and substraction of before being presented
to the AMM�s. The con�dence level controls the amount of �exibility in the
discovering of new endmembers. Let us denote by the expression the con-
struction of the binary vector if if

The steps in the procedure are the following:

1. Compute the zero mean image .

2. Initialize the set of endmembers with a pixel spectrum ran-
domly picked from the image. Initialize the set of morphologically inde-
pendent binary signatures

3. Construct the erosive ( ) and dilative ( ) AMM�s based on the
morphologically independent binary signatures in .

4. For each pixel

(a) compute the vector of the signs of the Gaussian noise corrections
and
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4 Experimental results
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Figure 1: Ground truth of the Indian Pines image.

(b) compute

(c) compute

(d) if and then is a new endmember to be added
to go to step 3 and resume the exploration of the image.

(e) if and the pixel spectral signature is more ex-
treme than the stored endmember, then substitute with

(f) if and the pixel is more extreme than the
stored endmember, then substitute with

5. The �nal set of endmembers is the set of original spectral signatures
of the pixels selected as members of

The spectra used for this work correspond to the Indian Pines 1992 image ob-
tained by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) de-
veloped by NASA JPL which has 224 contiguous spectral channels covering a
spectral region from 0.4 to 2.5 mm in 10 nm steps. It is a 145 by 145 pixel
image with 220 spectral bands that contains a distribution of two-thirds of
agricultural land and one-third of forest and other elements (two highways, a
railroad track, some houses and smaller roads). The available image ground
truth designates 16 mutually exclusive classes of land cover. Figure 1 shows the
ground truth as given in [9]. Comparison of the results of careful supervised
classi�cation [9] with the abundance images in �gure 2 resulting from the de-
tected endmembers, con�rm the validity of the abundance images and explain
their discrepancies relative to the ground truth areas.

We have applied our method for endmember detection on the result of
performing a Principal Component Analysis (PCA) pixel spectra dimension
reduction from 220 to 11 coefficients. Working with the PCA reduced data has
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5 Conclusions and Further Work

the advantage of reducing the computation requirements, however it is not clear
whether signi�cant information is lost in the dimension reduction process. An
important remark: the endmember spectra are taken from the original image,
not from the PCA reconstruction. The PCA coefficients image is used for the
selection of the pixels whose spectra will be selected. We have obtained 8 end-
members. The number of endmembers found depends on the initially chosen
endmember and on the control parameter , which was empirically set to 0.2 in
this experiment. The spectral unmixing based on the endmember spectra found
does not produce results with any physical meaning, but their examination is
our qualitative validation of the endmember identi�cation process, and it is use-
ful because there is no clear quantitative alternative to validate the approach.
These abundance images show that the procedure really discovers meaningful
spectra, and that they are consistent even after PCA transformations of the
data. The abundance images are presented in �gure 2. Consider, for example,
the steel towers identi�ed in the ground truth. It is not difficult to �nd in
the abundance image collections, ones that highlight specially this structure.
There are even "negative" recognition results in the form of negative (black)
abundance pixels. The endmember spectrum corresponding to the abundance
image 5 in �gure 2 may be considered as good steel detector. Curiously enough,
the roads are also clearly drawn in this abundance image. Our interpretation
is that this spectrum identi�ed as the endmember 5 corresponds to a generic
opposite to the vegetal cover spectra. The abundance image 3 of �g. 2, shows
good detection of cultivated land and negative abundance response in woods
areas. If we consider the fact that due to the early growth stages most of the
surface area corresponding to a pixel in the cultivated land is bare soil, we may
assume that the endmember that generates this abundance image corresponds
to soil cover spectra. On the other hand, abundance image 7 in both �gures
detects clearly woods and tree canopy areas. The detection in these images
agrees with the ground truth in 1. The background class is identi�ed also with
woods in some areas of these abundance images. This result agrees with the
results of careful supervised classi�cation experiments reported in [9].

We have proposed an algorithm for endmember detection in hyperspectral im-
ages taking advantage of the noise sensitivity of the Autoassociative Morpho-
logical Memories (AMM). The procedure does not need the a priori setting of
the number of endmembers. Its �exibility in the discovering of endmembers is
controlled by the amount of noise correction introduced in the pixel spectral
signature. Experimental results on the Indian Pines image have demonstrated
that the procedure gives a reasonable number of endmembers with little tun-
ing of the control parameter ( ), and that these endmembers have physical
meaning and that they may serve for the analysis of the image.
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