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Abstract.  Model combination provides an alternative to model selection.
With a little additional effort we can obtain MML models that improve the
generalization capabilities of their individual members.  However, it has been
recognized that the individual members must be as accurate and diverse as
possible.  In this paper we present a novel method for building MML models
by combining neural networks which are not significantly different from the
network selected by some model selection method.
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1. Introduction

Let (x, y) ∈ X × Y  be independent and identically distributed (i.i.d.) random
variables such that x takes values in ℜm and y takes values in ℜ.  Define the
regression function as:

y = g(x) + ε (1)
where ε is a stochastic component, commonly taken to be i.i.d. with zero mean and
constant variance σ2.

In that context, we consider that X and Y are related by a probabilistic
relationship, because generally an element of X does not determine uniquely an
element of Y.  This can be formalized assuming that an unknown probability
distribution p(x, y) = p(x) p(y|x) is defined over the set X × Y.

Given n observations {(xi, yi) ∈ X × Y n
i 1} = , we are interested in estimating the

regression function, providing an estimator that can be used given any new value of
x ∈ X, to predict a value y ∈ Y.

Instead of modeling the statistical dependency between input x and output y
using a single estimator f(x, w*), such that w* ∈ Ω where Ω is an abstract set of
parameters, in this paper we propose to improve the results by combining f(x, w*)
and artificial neural networks (ANNs) which are not significantly different from it.

The rest of this paper is organized as follows.  Our MML method is outlined in
section 2. A brief introduction to model selection in order to obtain an ANN which
approximates the true dependency is presented in section 3. The methodology based
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on resampling techniques [13] and multiple comparison procedures (MCPs) [9] to
estimate the ANNs which are not significantly different from f(x,w*) are the topic of
section 4.  Several empirical techniques for combining the obtained ANNs are
proposed in section 5. Our experimental results are presented in section 6 and,
finally, our conclusions appear in section 7.

2.- The MML method

There are two disadvantages in training many different candidate networks and
selecting the best network discarding the rest [1].  First, all of the effort involved in
training the remaining networks is wasted.  Second, the generalization performance
on the validation set has a random component due to the noise on the data, and so
the network which had best performance on the validation set might not be the one
with the best performance on new test data.

Combining networks can lead to an effective way of improving in the predictions
on new data with a little additional effort.  However, this idea has been proved to be
true only when the ANNs are fairly accurate, but fairly independent in the errors
they make [8], [10].  The ANNs generated by our MML method satisfy both
conditions: they are not significantly different from the network with minimum
prediction risk (accurate) and they have been created varying their complexity
(different errors).

The steps of our method may be outlined as follow:
1. Take the whole data set and create m resampled data sets.
2. For each resampled set:

2.1. Train k neural networks whose complexity i goes from 1 to k
2.2. Test these networks and obtain k validation error measures

3. Estimate the class (Si) with minimum prediction risk, that is the class with
minimum validation error mean.

4. Obtain a subset with the network classes which are not significantly
different from the network class with minimum prediction risk.

5. For each class, select one member fi(x,w*) whose parameter vector w*

minimizes the empirical risk
6. Combine these networks.

In the next sections, these steps will be described in more detail.

3. Model selection

The task of model selection is to choose a functional form from a number of
possible competing alternatives, and to estimate the parameters in a way that
satisfies a fitness criterion [15].  This criterion, which is called expected risk or risk
functional, can be defined as:

R(w) = ∫ ∫
y x

 L(y, f(x,w)) p( x, y) dx dy (2)

where L(y, f(x,w)) is the loss function measuring the error.
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But, the optimal model cannot be found in practice, because the probability
distribution p(x, y) is usually unknown and only a sample of it is available. To
overcome this shortcoming we need an induction principle, a general prescription to
obtain an estimate f(x, w*).

The Minimum Prediction Risk (MPR) principle [15] performs a guided search in
specification space.  Network classes are ordered according to their complexity,
forming a nested structure, S1 ⊂ S2 ⊂ ... ⊂ Sk, where k might be the number of
hidden units for MLPs with one hidden layer or the number of centers for RBF
networks.  Then, from each class Si, we select one member fi(x,w*) whose parameter
vector w* is estimated minimizing the empirical risk:

Rn(w) = ∑
=

n

i
n

1

1
L(yi, f(xi,w)) (3)

Later, we estimate the prediction risk associated with fi(x, w*) by means of
algebraic [12] or resampling methods.  Finally, we choose the model with minimum
prediction risk.

4. Non-significant different models

As suggested in section 2, in order to improve the generalization capabilities of
our MML method, diverse individual ANNs should be generated so as to perform
reasonably well on test data.  This can be accomplished by the following procedure:

1. Apply Nemenyi test to obtain the network classes which are not
significantly different from the network class with minimum prediction
risk.

2. Apply the omnibus tests: Repeated Measures ANOVA test, if its
assumptions are met or Friedman test in different case.

3. If the global null hypothesis is true (that is, all network classes of this set
are not significantly different), finish the process.

4. If the global null hypothesis is false, apply more powerful multiple
comparison procedures (t or Wilcoxon paired tests with Bonferroni
method for p-values adjustment) and obtain a subset with the network
classes which are not significantly different from the network class with
minimum prediction risk.

At this point, some remarks about the above method should be done.  First, all
tests [16] have been applied using a level of signficance α = 5%.  Second, when
omnibus tests (step 2) are significant, it indicates that at least two of the network
classes are significantly different, but not which are.  At this point, multiple
comparison procedures, which are usually less powerful, are applied (step 4).  Third,
Nemenyi test (step 1) is a medium power multiple comparison procedure. It may
even accept network classes that should be rejected. It is a good procedure to
generate an initial but not definitive set of non-significant network classes.  And
finally, the results may improve with a large number of resampled sets:  resampling
methods estimate better the prediction risk and parametric tests [4], which are more
powerful,  may be applied on steps 2 and 4.  We suggest m ≥ 30.
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Test Brief description Assumptions

Friedman test
High power. Omnibus. Nonparametric.
Used to compare k > 2 samples. None

Nemenyi test
Medium power. All pairwise test.
Nonparametric. Used to compare k > 2
samples.

None

Repeated mesaures
ANOVA

High power. Omnibus. Parametric. Used
to compare k > 2 samples.

Normality, compound
symmetry / sphericity

t paired test High power. Parametric. Used to
compare k = 2 samples.

Normality

Wilcoxon matched
pairs test

High power. Nonparametric. Used to
compare k = 2 samples.

None

Table 1: Statistical tests for related samples.

5. Combining networks

Once a set of ANNs has been generated, they must be combined.  Most methods
are reduced to a linear weighted combination of models in regression (eg. Bagging
[2], AdaBoosting [7], [5] and Stacked regression [3]).

In this section, we propose three empirical rules for assigning values to these
weights.  First, the simplest one, as all networks make similar errors, an unweighted
average is computed.  Second, their weights are proportional to the number of times
that each network has been selected as the network with minimum validation error
(see section 2, step 2).  And third, the weights take values inversely proportional to
validation error sum per network.

6. Experimental results

A number of simulations have been conducted to evaluate the efficiency of
MML method using RBF networks. The width of the basis functions has been set to

nxxmax ji 2)( −  where n is the number of kernels and the highest complexity (k)

is 20.
One thousand data sets of several sample sizes (5, 10, 15, 25, 50, 100 and 500

examples) have been generated according to the following experimental functions:

ε++−+−= 365.12.0 34 xxxy , )2,2( +−∈x (4)

ε++= )62(10 xsiny , )2,2( +−∈x (5)

where ε is gaussian noise with zero mean and variance equal to twenty per cent of
generalization sample standard deviation.

We trained each network with every generated data set, and estimated the
generalization errors applying a new large size test set (10000 examples unseen
previously).

In order to compare the performance of our MML models with the minimum
prediction risk model, we define the observed efficiency of a model mi as the ratio
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that compares the generalization error between the best model and the model mi.
Thus observed efficiency ranges from 0 to 1.

Two resampling techniques have been used in our experiments:  bootstraping
and random hold-out (with 2/3 of examples in the resampled training sets) [6], [13],
[14].  And 50 resampled data sets have been generated per each data set.

Finally, the quadratic loss has been used as loss function in (3).
Tables 2 and 3 show observed efficiency means.  The four first columns  contain

the results of comparing the three strategies for combining ANNs proposed in
section 5 (columns from (1) to (3)) with the model with minimum prediction risk
selected by the resampling method (column (4)).  In column (5) appears the
observed efficiency mean between the model with minimum generalization error
and the model selected by resampling.

bootstrap random hold-out
sample

size (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)
5 0.7871 0.8870 0.7121 0.6727 0.3495 0.9015 0.9045 0.8589 0.8073 0.4889

10 0.9021 0.9346 0.7797 0.7507 0.4831 0.9243 0.9377 0.8526 0.7928 0.5545

15 0.9281 0.9383 0.8398 0.7852 0.6003 0.9420 0.9409 0.8725 0.8193 0.6266

25 0.9586 0.9574 0.9212 0.8478 0.7569 0.9605 0.9528 0.9359 0.8684 0.7810

50 0.9736 0.9694 0.9779 0.9522 0.9200 0.9714 0.9682 0.9773 0.9612 0.9285

100 0.9858 0.9871 0.9884 0.9908 0.9776 0.9849 0.9857 0.9881 0.9897 0.9762

500 0.9987 0.9987 0.9987 0.9970 0.9945 0.9983 0.9985 0.9983 0.9969 0.9943

Table 2: RBF networks trained with samples generated from function (4).

bootstrap random hold-out
sample

size (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)
5 0.7888 0.8332 0.7390 0.7329 0.4935 0.9189 0.9185 0.8991 0.8394 0.4591

10 0.8430 0.8976 0.8361 0.8220 0.6865 0.8185 0.9275 0.9148 0.8877 0.6827

15 0.9189 0.9426 0.9138 0.9119 0.8602 0.9268 0.9368 0.9327 0.9375 0.8863

25 0.9508 0.9542 0.9752 0.9909 0.9722 0.9456 0.9495 0.9700 0.9826 0.9602

50 0.9795 0.9822 0.9849 0.9912 0.9776 0.9771 0.9806 0.9839 0.9899 0.9742

100 0.9892 0.9927 0.9902 0.9941 0.9877 0.9881 0.9910 0.9899 0.9929 0.9846

500 0.9988 0.9993 0.9988 0.9982 0.9969 0.9983 0.9990 0.9983 0.9982 0.9963

Table 3: RBF networks trained with samples generated from function (5).

The simulations suggest that our MML method gives an ensemble with
generalization capabilities better than the best model, the ANN with minimum
prediction risk.  The more the best model moves away from the minimum
generalization error model (see column (5)),  the better the observed efficiency mean
of our MML method is.  Furthermore, we observe that the best proposed strategy for
combining models is usually the second, and immediately afterwards the first.
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7. Conclusions

In this work we have presented a new MML method based on the combination of
non-significant different ANNs which are generated by resampling techniques and
MCPs.  Simulations with artificial data show that the models generated with this
method make good generalization errors.

Future work will address the application of this method to other models and also
to study how other more powerful p-value adjustment methods [11] can improve the
performance.
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