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Abstract. The 1-v-1 tri-class SV machine is specially addressed to avoid the loss of
information that occurs in the usual 1-v-1 training procedure, meanwhile a similar two-
phases (decomposition, reconstruction) scheme is used. The new machine presents all
the advantages of 1-v-1 training and it allows to incorporate by means of a tri-class
scheme all the information contained into the training patterns when a multi-class
problem is considered.

1 Introduction

Support Vector Machines are learning machines implementing the structural risk min-
imization inductive principle to obtain good generalization on a limited number of
learning patterns. This theory was originally developed by Vapnik on the basis of a
separable binary classification problem with signed outputs +1 [9].

SVM presents good theoretical properties and behavior in problems of binary clas-
sification [3]. There exist many works generalizing the original bi-class approach to
multi-classification problems ([7], [8]) through different algorithms, like 1-v-r SVM or
1-v-1 SVM. This paper improves the original idea developed in [2] and [1].

The paper is organized as follows, in section 2, the standard SVM classification learn-
ing paradigm is briefly presented in order to introduce some notations. Section 3 is
devoted to a short introduction to SVMs for multi-classification. In Section 4, the
1-v-1 Tri-class SV Machine is presented and some examples illustrate its behavior.
Finally, some concluding remarks are displayed.

2 Bi-Class SV Machine Learning

The SV Machine is an implementation of a more general regularisation principle
known as the large margin principle. Let Z = (z,9) = ((z1,41),-.., (Zn,Yn)) =
(z1,...,2n) € (X X V)" be a training set, with X being the input space and Y =
{61,0:} = {—1,41} the output space. Let ¢ : X — F C R%, with ¢ = (¢1,...,ba),
be a feature mapping for the usual ‘kernel trick’. F is named feature space. Let
x < ¢(z) € F be the representation of x € X. A (binary) linear classifier, fw(z) =
(¢(x),w) = (x,w), is searched for in the space F, with fw : X — F — R, and outputs
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will be obtained by thresholding it, hw(z) = sign(fw(z)). The classifier w with the
largest geometrical margin on a given training sample Z can be written as, [6]

def 1 .
Wsvm = argmax —— - min y;{Xi, w) (1)
wer |lwll =€z
A method computationally amenable of casting the problem is to minimize the norm
[[w]|| in (1) with the geometrical margin fixed to unity

min  —||w||

weF 2 (2)
subject to  yi(xi,w)>1 2z € Z

Solution is

WsvM = Zai YixXi ;  fwgyn (@) = Zai yi ki, x) (3)

K3

where k(z,z') = (#(x), p(x')) = {x,x’) is the kernel function, and only a few a; are
not zero, those associated to the so-called support vectors.

3 SV Machine for Multi-Classification

Let Z be a training set. Now, a set of possible labels {61,---,6;}, with £ > 2 will
be considered. Subsets Z; € Z, defined as Z, = {z; = (xs,¥:) : yi = O} generate a
partition in Z. It will be denoted ny = #Zx, son = n1 +mna + --- + nyg. If Iy is the
number of index i being 2; € Zy, it follows U, {(xi,¥:)} = Z.

A very usual multi-classification SVM approach is 1-v-1 SVM: a first decomposition
phase generates several learning machines in parallel, each machine having in con-
sideration only two classes, and a reconstruction scheme allows to obtain the overall
output by merging outputs from the decomposition phase. In this approach, “ZQ—*U
binary classifiers are trained to generate hyperplanes frn, 1 < k < h < ¢, separating
training vectors Zj, with label 8, from training vectors in class 6y, Z;. If fi), discrim-
inates without error then sign(fin(x:)) = 1, for z; € Z; and sign(fin(xi)) = —1,
for z; € Z,. Remaining training vectors Z \ {Z;|J Z,} are not considered in the
optimisation problem. Hence, for a new entry x, numeric output from each machine
frn(z) is interpreted as,

o ={ 51 Lo T .

In the reconstruction phase, labels distribution generated by the trained machines in
the parallel decomposition is considered through a merging scheme.

The 1-v-1 multi-classification approach is usually preferred to the 1-v-r scheme [7].
Main drawback for this approach is that only data from two classes is considered to
train each machine, so output variance is high and any information from the rest of
classes is ignored.

If a hyperplane fi, must classify an input z; with i ¢ I, | I, only output firn(zi) =0
will not be translated into an incorrect interpretation. The natural improvement to
be analysed is to force every training input in different classes to 6, and 6, to be
contained into the separating hyperplane fr,(x) = 0.
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In [1] a novel procedure is presented where remaining training vectors are forced to be
encapsulated into a d-tube, 0 < § < 1, along the separation hyperplane. Parameter
0 allows to create a slack zone (a ‘tube’) around the hyperplane where remaining
training vectors are covered. The separating hyperplane must solve the optimisation
problem,

1, .
min 5 [w] +01'Xi:£i+02'2j:(§0i+¢j)
yi (W, xi) >1—§& 2 € Zin (5)
=6 — ] S{w,x;) <0+ 2z €23
&2>0 zi €21
i, >0 2z €23

subject to

where 215 are the patterns belonging to the classes labelled as {—1,+1} and Z3 are
those labelled with 0. The solution has a similar form to (3), being «; the multipliers
associated to the problem, accomplishing )", a; = 0. For a new entry z, the numeric
output from the machine fw(z) is interpreted as

1 if fw(z)>6
O(fw(z)) =4 -1 if fw(z) < -0 (6)
0 if |[fw(z)| <6

This approach has demonstrated good results on standard ‘benchmarks’ [1], but in
the general case, it is necessary to select many parameters': (i) k, kernel function; (ii)
C1, associated weight for the sum of errors into the two discriminated classes; (iii) Ca,
associated weight for the sum of errors into the remaining classes; (iv) d, insensitivity
parameter.

4 1-v-1 Tri-class SVM

The number of tuning parameters can be reduced if the margin to be maximized in (2)
is that defined between the patterns assigned with output {—1,+1} and the entries
labelled with 0, the remaining patterns. In this case, the width of the ‘decision tube’
along the decision hyperplane where 0-labeled patterns are allocated is no considered
‘a priori’ and the § parameter is eliminated. A classifier with this characteristic must
to accomplish

def 1
— — 7
Wsvs = arvgvén}_ax Wl {Mrélglle,(x.,w) meax3|(x.,w)|} (7)

When ||w|| is minimized while the rest of the product is fixed to unitary distance, (7)
can be translated into
. 1 2
min  =||wl||
subject to  yi(xi, W) > 14 [{x5,W)| 2z € Z1,2; z; € Z3

in a more amenable manner?.

LAn extended study can be found in [4].
2Constraints are a bit stronger than (7).
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This optimisation problem is consistent with the standard formulation because if
all the 0-labeled training patterns were exactly on the decision hyperplane (i.e. no
incorrect interpretation is possible) or these patterns were not concerning into the
problem, then the novel machine is similar to the 1-v-1 SVM machine.

Restrictions can be relaxed to allow little errors with the +1-labeled training patterns
by using ‘slack’ variables

& =1+ max [(xj, w)| —yi{xi, W) 20 z € Z12 9)
zj 3
and restrictions in (8) can be manipulated to obtain the optimisation problem
. 1 2
min Slwl’+C &
K3

ot Yi(xi — x5, W) —1+& >0 2 € 212525 € 23
o &E>0 2z € Z1p

(10)

When Lagrange multipliers are applied to the original optimization problem, it is
obtained

L= SIWlP+C Y6+ oy (=& -yl —x,w) = Y& (1)

with
0< Za,—j <C, z €2 w = Zy, ij (X3 — Xj) (12)
J ij
The dual problem is,

m(ilxzaij = yiyrai o (X — X5, X — Xi)
i j ijkl
0<> ai <C (13)
subject to J
aij,ap > 0, Ziy, 2k € 21,25  Zj, % € Z3

and the solution function can be written,

fw(z) = Zaijyi (k(zi,z) — k(z;, 7)) (14)

For a new entry z, output is interpreted according to (6), where

0= max |fw(w;)] = max |{w,z;)] (15)

In Figure 1 the behavior of the novel machine is illustrated on a simple separable
problem with gaussian kernel. Support vectors (SVs) are those patterns with null
associated parameters, i.e. a null row or column in the parameter matrix. As it was
expected, the number of support vector is limited and they lie in the margin. Solid
lines are indicating the §-tube for the ‘remaining vectors’ and dot line is the separating
hyperplane. It must be noted that values for § are very low, in this example 0.1126,
0.1750 and 0.2159.

In Figure 2 the performance of the novel machine is showed when it is applied with
gaussian kernel on a multi-class no separable problem. It can be observed that a
little band between classes remains unclassified because the outputs from the parallel
decomposition phase assign this zone to different classes.



ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 355-360

(c) Class 1 vs 3. 9 SVs. (d) Class 2 vs 3. 8 SVs

Figure 1: Results on a simple separable problem with 45 patterns.

5 Conclusions and Future Works

In this paper, a new kernel machine has been designed to solve multi-classification
problems. The machine allows to incorporate by means of a tri-class scheme all
the information contained into the training patterns when a multi-class problem is
considered. Information from ‘remaining patterns’ is captured into a d-tube, where §
is an optimal parameter automatically obtained by maximizing the margin between
classes.

Example on the artificial data set show the good performance of this novel machine,
and it must be evaluated on standard ‘benchmarks’.

New research lines can be started about theoretical generalization bounds of this
machine. By observing the constraints in the optimisation problem, a direct extension
to ordinal regression problems is being investigated. ECOC methodology can be
applied when the machine be evaluated on ‘benchmarks’. Moreover, an initiated line
is the probabilistic interpretation of the outputs according to their value [5].
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Figure 2: Complete classification on a no separable problem with 50 patterns.
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