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Abstract. We propose the use of the Gabriel graph for the exploratory
analysis of potentially high dimensional labeled data. Gabriel graph is a
subgraph of the Delaunay triangulation, which connects two data points
vi and vj for which there is no other point vk inside the open ball with
diameter [vivj ]. If all the Gabriel neighbors of a datum have a different
class than its own, this datum is said to be ”isolated”. While if some
of its Gabriel neighbors have the same class as its own and some others
have not, then this datum is said to be ”border”. Isolated and border
data together with Gabriel graph, allow to get informations about the
topology of the different classes in the data space. It is complementary
with “classical” and “neural” projection techniques.

1 Introduction

Exploratory data analysis is an important and active field of researches, which
has to deal with the exponential growth of high-dimensional data bases in
many domains. Here we consider the case of labeled data in potentially high
dimensional space, and propose the use of a topological graph to extract some
information about the topology of the different classes.

Duda et Hart [5] define a ”class-similarity” graph as a graph which connect
pairs of centers of gravity of data of different classes, which are closer than a
threshold. Another approach proposed by Melnik [10] creatse links between
data if all the points sampled on a link are given the same label by a classifier.
If the sampling is sufficiently high, the different connected components of the
graph represent regions of different classes.

We propose the use of a topological graph called Gabriel graph to extract
informations about connexity of the different classes from a labeled data set.
Gabriel graph [8] is a subgraph of the Delaunay triangulation [7] of the data
set. It has been studied in the field of classification, as a way to edit and
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condense large data sets [12], by keeping only relevant data which take part
to the decision boundary of a nearest neighbor classifier. Recently, it has been
proposed in [13], that these data which are preserved in the edited data set,
and that we call ”border” data hereafter, are similar to support vectors in the
context of Support Vector Machines [2], which determine the decision boundary.

We define ”normal”, ”border” and ”isolated” data and study their use with
Gabriel graphs to reveal the topology of high dimensional labeled data, which
is complementary with “classical” (Principal Component Analysis. . . ) or “neu-
ral” (Curvilinear Component Analysis [3], Self-Organizing Maps [9]. . . ) pro-
jection techniques.

2 Normal, border and isolated data

Considering a set of N data v and a graph G(v, L) with L a set of edges or
links between the data. Two data vi and vj are neighbors of each other if
lij = {vi, vj} ∈ L. We define different ”qualities” w.r.t. G(v, L) (Figure 1a) :

Border: a datum v ∈ v for which there is at least one of its neighbors through
G, which has not the same class as its own.

Isolated: a datum v ∈ v for which all the neighbors through the graph G,
have a class different from its own. “Isolated” data are also “Border”.

Normal: a datum v ∈ v for which all the neighbors through the graph G, have
the same class as its own.

In the following, we choose a topological graph G for which the previous
definitions have a relevant meaning w.r.t. the topology of the classes in the
data space.

3 Voronöı , Delaunay and Gabriel graphs

Considering a set v of N data in E, a bounded domain of RD, the Voronöı
region Vi associated to a datum vi is defined as the region of E which contains
all the points for which vi is the closest datum among all the data v [7]. The
Delaunay triangulation DT(v) of v is the set of edges drawn between pairs of
data whose Voronöı regions share a common boundary [7] (Figure 1b).

Although DT would be ideally suited for being the graph G we expect, it
has a O(N�D

2 �) computing time, making DT construction intractable for high-
dimensional data spaces. We propose to use the Gabriel graph [8] of v which
approximates DT(v) and which takes O(D.N3) time for its computation.

The Gabriel graph GG(v) is the set of edges lij subset of DT(v), for which
the open ball with diameter [vivj ] contains no other data than vi and vj :

GG(v) =
{
lij ⊆ v | ∀ vk ∈ v, (vk−vi)2 + (vk−vj)2 > (vi−vj)2

}
(Figure 1c)

The brute force algorithm to compute GG(v) is straight forward from the
above definition. A heuristic proposed in [1] may improve noticeably the com-
puting time.
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Figure 1: (a) from top to bottom: “border”, “isolated” and “normal” data (circle
at the center) (classes in gray levels). (b) Voronöı diagram (thin lines) and Delaunay
triangulation (bold lines) of the data (circles). (c) Gabriel graph (bold lines) of the
data with border and isolated data of class , and border data of class .

4 How to use Gabriel graph

Applying the definitions given in section 2 with the Gabriel graph, allows to
analyze the topology of the labeled data set (Figure 2).

4.1 Basic insights

Border data are data of each class, closest to the class decision boundary than
any other data. The identification of a border datum is a warning signal to the
expert to pay more attention about its labeling.

The middle point of each edge joining two border data of different classes,
is a sample of the decision boundary in the sense of the nearest neighbor clas-
sifier1. Hence, by projecting these middle points (e.g. using CCA [3]), we can
visualize the decision boundary.

Isolated data are subset of border data. Isolated data may reveal either
outliers (error in labeling) or overlapping of the classes. The identification of
an isolated datum is a warning signal to the expert that its labeling of this
datum is probably erroneous because all its neighbors have a different class
than its own.

Normal data labeling need no particular attention not touching decision
boundaries.

4.2 Advanced analysis

We propose to prune the original graph G in order to reveal the different con-
nected components w.r.t classes and qualities. All the following constructions
hold for any graph G but we focus on Gabriel graph here.

1A new datum not in v is labeled with the class of the closest datum to it among v

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 21-26



G2 G4

G5

G3

Decision boundary

samples

Figure 2: Number of nodes “x” (edges “(y)”) in (between) corresponding connected
components of G2 and G4, are indicated beside nodes (edges) of G3 and G5.

i) G : Construct the Gabriel graph of v.

ii) G2: Clear edges in G connecting data pairs of different classes.

iii) G3: Create the graph G3 which associates a vertex to each connected com-
ponents of G2. If two of these connected components are linked in G,
connect the corresponding vertices in G3. G3 is the ”class” graph.

iv) G4: Clear edges in G2 which connect data pairs of different qualities.

v) G5: Create the graph G5 which associates a vertex to each connected com-
ponents of G4. If two of these connected components are linked in G, con-
nect the corresponding vertices in G5. G5 is the ”class&quality” graph.

The drawing of the ”class” graph shows the topology of the classes, the
way they are connected or not, and the density of the connections between
the different components. Considering the ”class&quality” graph, the same
analysis may be done and allows to visualize the number of border and isolated
components.

5 Analysis of Iris database

The Iris benchmark database [6, 11] is a set of 150 data, with 4 attributes
(sepal and petal length and width, of Iris plants) and 3 classes (Iris Setosa
(St), Versicolor (Vs) and Virginica (Vg)). There are 50 data of each classes.

After a prior normalization of the data, the analysis technique we propose
gives the following results (Figure 3):

• There is no isolated data in any of the classes which each consists of only
one connected component (b). Hence, there is no overlapping in the data
space despite what suggests 2-dimensional linear projection using PCA
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Figure 3: Iris data base: (a) Projection onto the two first principal components (St
“+”, Vs “O”, Vg “∗”). (b) “class” graph. (c) “class&quality” graph. (d) Nonlinear
projection using CCA [3], of the center of gravity of each G2’s connected component,
and of the decision boundary samples between St and Vs (diamonds), and between
Vs and Vg (triangles).

(a) or the class-preserving projection presented in [4]. So the decision
boundary considering each pair of classes, is homeomorph to a 3-flat.

• Classes St and Vg are not connected (b) so two different clasiffiers may
be considered: one separating St from Vs, and another Vs from Vg (d).

• There are 68 links between Vs and Vg, while only 8 between St and Vs
(c). And there are only 6 border data in St (12% of this class), while 30
in Vs (60%) and 24 in Vg (48%). The same border component (28 data)
of Vs is connected to both St and Vg. Moreover, the component of 44
St normal data is connected to St border data with only 19 links. This
is the opposite for Vs (20 normal data and 60 links) and Vg (26 normal
data and 38 links). All this suggests that St is well clustered having a
little part in contact with Vs, while Vs and Vg are more spread along
their common boundary.

This approach helps us to grasp the topology of the data in the data space,
and to detect eventual misleading projections of the data in lower dimensional
spaces: it is complementary to “classical” and “neural” projection techniques.

6 Conclusion

We propose to define the quality of data as ”isolated”, ”border” or ”normal” ac-
cording to the class of their neighbors on a graph. These qualities together with
Gabriel graphs allow to discover the way the different classes are connected,
the number of data of different classes which are in contact, to identify outliers
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allowing to notice data likely to have an erroneous label, to pay more attention
to the labeling of data near decision boundaries, and to visualize a sampling of
the decision boundary in the sense of the nearest neighbor. This approach is
complementary with “classical” and “neural” projection techniques.

New visualizations tools remain to create to apprehend complex graphs ob-
tained in case of strong overlapping of the classes. We experiment this approach
on a large set of 5-dimensional data in the field of sismic events classification.
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