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Abstract. We focus on covariance criteria for finding a suitable sub-
space for regression in a reproducing kernel Hilbert space: kernel princi-
pal component analysis, kernel partial least squares and kernel canonical
correlation analysis, and we demonstrate how this fits within a more gen-
eral context of subspace regression. For the kernel partial least squares
case some variants are considered and the methods are illustrated and
compared on a number of examples.

1 Introduction

Over the last years one can see certain learning algorithms being transferred to
a kernel representation [10, 12]. The benefit lies in the fact that nonlinearity
can be allowed, while avoiding to solve a nonlinear optimization problem. In
this paper we focus on least squares regression models in the kernel context. By
means of a nonlinear map into a Reproducing Kernel Hilbert Space (RKHS)
[13] the data are projected to a high-dimensional space.

Estimation of regression coefficients in the RKHS will then be performed
in a new basis constructed by optimization of (co)variance criteria. Next to
PCA and CCA, we explore some intermediate PLS variants to see whether
any gain can be involved. By reducing the new basis and projecting data to a
subspace, the number of regression parameters is controlled. This scheme can
reduce multicollinearity between the new variables by reducing variance on the
least squares estimators. A better generalization can be obtained in this way
for regression models.
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This short paper is organized as follows. In section 2 we give minimal
background on RKHS and introduce regression in a feature subspace. In section
3 we overview six pls variants for finding an optimal subspace. In section 4 we
give their kernel versions. In section 5 we compare the methods on sinc data.

2 Subspace regression in RKHS

Assume data {{(xi,y:;)}"; € RP x R} have been given. A kernel k pro-
vides a similarity measure between pairs of data points k£ : X x X — R :
(x1,X2) — k(x1,%x2). Once a kernel is chosen, one can associate to each z € X
a mapping ¢ : X — Hy : x — k(x,-), which can be evaluated at x’ to give
o(x)(x') = k(x,x’). One obtains a RKHS Hj, on a compact X under the con-
dition that the kernel is positive definite [1]. The representer theorem [6] says
that the solution to a regularized cost function in a RKHS is constrained to
the subspace spanned by the mapped data points. The Mercer-Hilbert-Schmidt
theorem states that for each positive definite kernel there exists an orthonormal
set {@}?:1 with non-negative \; such that we have following spectral decom-

position: k(x,x’) = Z?Zl Xidi (%) (x") = (p(x), o(x)) where d < oo, and \;
and ¢; are the eigenvalues and eigenvectors of the kernel. This allows to ex-
press ¢(x) in this ¢ basis, so that the ¢ mapping can be identified with a d x 1
feature vector p(x) = [V A101(x) VA202(x) ... VAgga(x)]T. One can then
construct an n x d feature matrix in RKHS: ® = [p7 (x1) ¢7 (x2) ... T (xa)]T.

The goal is to obtain a regression estimate of the underlying function, given
the data. Here, we consider the standard linear multivariate regression model in
feature space Y = ®W +E, where Y represents a n X ¢ matrix of observations of
the dependent variable, W is the unknown d x g matrix of regression coefficients
and F is a n X ¢ matrix of errors with zero-mean Gaussian i.i.d. values of equal
variance o2 (unknown). We assume all mapped data variables have been mean-
centered.

A first difficulty in this setup, is that usually d > n, and potentially even
d = 4o00. In order to restrict the infinite number of regression coefficients,
one can introduce a projection of the data into a subspace of finite dimension
m < d. Hence the name subspace regression. If we gather the basis vectors
{vi}72, of the subspace in the columns of a d x m transformation matrix V', we
can express the ¢(x;) in the new coordinates, so that Z = ®V and the confined
regression model becomes Y = ZW + E. The particular choice of the basis
vectors will be discussed in section 3. To estimate the unknown true model
parameters, the elements of W, we choose here to minimize the error F in least
squares sense: minyy ||[Y — ZW||3.

A second difficulty is that in general the elements of matrix ® are unknown
because the explicit expression for ¢ is not available. An elegant and optimal
approach is to make use of the so-called kernel trick [10], which makes use of
the decomposition V = ®T A. This allows to write Z = ®V = ddTA = KA
and our central model equation becomes

Y = (KA)W + E. (1)
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Since we assumed that the data are centered, we need to adjust the expres-
sion ¢(x) with p(x) — 2 37" | ¢(x;) everywhere. For the kernel matrices this
has the consequence of replacing K by [9] K := (I, — 21,11)K(I,, — 21,1T)

where I, is the identity matrix and 1,, a vector of ones.

3 Subspace construction

Basically, we need to find directions in the variable space that form a new basis,
upon which we can project. Several criteria can be chosen.

A first criterion is minimization of within-space correlation or multicollinear-
ity, which produces uncertainty in regression coefficient estimates. Principal
Component Analysis (PCA) [5] reduces this:

max var (vIx) = vICy,v s.t. |[v]| =1 (2)

with Cp = XTX the sample covariance matrix and VIV = I,. This in-
volves a diagonalization procedure which requires solving an eigenvalue prob-
lem C,,v = Av. In dimension reduction one describes PCA as the search
for a best fitting subspace in a least squares sense by minimizing Jecs (V) =
Do 1% — v x|

A second criterion is maximization of between-space correlation. For the
purpose of prediction one wishes strong correlation with the target vectors.
Canonical Correlation Analysis (CCA) [4] implements this:

st Ivix[ =1=wTy],

3)
with Cpy = X Ty . Essentially this requires the solution of the system Cyyw =
A CyxVv,Cyxv = A Cyyw. The new basises in both spaces are chosen such
that the vector components (projections) of all data maximally coincide. And
in least squares sense: Joca (v, w) = Y1 [[vTx; — wTy;||?, minimizing differ-
ence between the cosine of angles of lines in both spaces.

In between these, Partial Least Squares (PLS) [14] can be positioned:

TC
’ XX Yy

maxcov (vix,wly) =vICp,wst. [v]|=1=|w]|. 4)

vV, W

Solutions can be obtained by using Lagrange multipliers, which leads to solving
the PLS-SVD system Cpyw = Av, Cy,v = Aw. As a least squares cost function,
JPLS(V; W) = JPCA(V) + JCCA(va) + JPCA(W)~

Imposing other constraints, results in other PLS variants. The original ver-
sion of Wold, PLS-WA, computes consecutively the first left and right singular
vectors of (XU)TY (") after which each time the data matrices are deflated
(projected into the complement of the space spanned by the previous found
new variables, or scores):

X0+ = X _ b (bTb,) *bI X"  with b, = X"v, 5)
yr+) = Yy _a.(ala,) 1aly (")  with a, =Y w,.
As such the orthogonality of the scores is guaranteed in both spaces. Its directly
adapted most used variant has resulted in PLS2 or PLS1, where y-space is being
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deflated with the x-space score.

We included PLS-U, not with an orthogonality constraint, but more strongly,
uncorrelatedness with the previously found coefficients: V.I'C,,V, = I, and
wr CyyW, = 1,. By Lagrange multipliers one arrives after some manipulation
again at an eigenproblem with deflations:

X(T+1) = X(T) - (C:L’:cvr)((Cza:vtr)T(meVr))_l(meVT)TX(T) 6
YO = YO (O W) ((Coy W) (Cyy W)~ (Cg W)Y O

The PLS least squares interpretation, allows to add immediately two more
variants. Leaving out the compensating PCA term in x space, we obtain PLSx
from CCA, with Cy, = I,. By symmetry, also a PLSy version can be obtained.

4 Introducing the kernel function

Starting from the PLS covariance criterion, we can proceed likewise in feature
space, but now with v and w as d x 1 feature space vectors. To arrive at calcula-
tion with kernels instead of feature vectors one typically expands the new basis
vectors as follows: v = >0 a;0(x;) = ®Taand w = Y, bio(y;) = ®1b.
This will result in maxa p aTKmeyb/\/aTKma\/bTKyyb, where [Kyz)i; =
o(xi)To(x;) and [Kyylij = ©(yi)Te(y;) are the kernel Gram matrices and v
and w were divided by their norm. PLS-SVD will then be determined by:
Ky,,b = Ja
K,a = Ab. (7)
In the same approach KPCA [9] was derived as the eigenproblem K,,a = Aa.
For KPLS-WA and KPLS-U we can substitute X by ®; and Y by ®,. But
because of the unknown elements of ®, we cannot directly obtain the SVD of
(®7)T®5. The NIPALS-PLS algorithm [14] allows to circumvent this issue and

delivers the a and b as first singular vectors of K, g(cQ)K@(,Z) and KZ(,Z)KQ(CQ). Then
the deflation expressions become for PLS-U at step r:

K™ = Koo = K3, A((ATKS, A) T ATES,
Ky = K, - K2,B.(BT'K3,B,) 'BIK?2,. ®)
And for PLS-WA (which resembles the kernel version of PLS1 [8]) we have:
EGTY = K - aalK) - KiYaal +aal K aal
Kyt = K5 - bbTES) — K5 bT + b bT Kb, bT. ®)

For KPLSx and KPLSy we point out that its solutions can be considered
in the optimization context as special cases of the 'regularized’ KCCA variant
which was proposed in the context of primal-dual LS-SVM formulations [11, 12]:

Kyb = ANw1Kgp+1)a,
Kzza = ANvaKy, +1)b,
if one fixes the positive parameters (v1,12) respectively as (1,0) and (0,1).
Even KPLS-SVD is a subcase, with (vq,v2) = (0,0). The 'regular’ KCCA
was originally reported by [7] and [2], in an independent component analysis
(ICA) context. So all these closely related methods deliver us useful subspaces

(10)
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spanned by the columnspace of A (eigenvectors {a;} ,, ordered corresponding
to nondecreasing values of the eigenvalues A;) in (1).

5 Experiments

To demonstrate some characteristics of these subspace regression methods, we
applied them to the sinc function. We considered a domain dataset of 100
equally-spaced points in the interval [-10,10]. The corresponding output values
were centralized. We used a Gaussian kernel exp(—||x; — x;||3/h?) with h = 1.
In Fig.1(left) a typical picture of the first three components qualitatively show
a good correlation with the targets. Non-equally-spaced sampling causes the
components to be more irregular and oscillatory, while prediction will be less
performant in undersampled regions and near boundaries. In Fig.1(right) we
show an interpolation example on the same data, but with added Gaussian noise
with standard deviation ¢ = 0.2. The other methods give similar component
profiles and prediction results.

1 3
1st component . =~ true function
2nd component . + noisy data

— — 3rd component B
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Figure 1: (Left) Visualisation of the first three components extracted by KCCA;
(Right) Example of prediction on a noisy sinc (6 =0.2, m =4, h=1,v1 =1 =w).

We compared for 100 randomizations on sinc data sets (noise added with
o = 0.2) with results shown in Table 1. The number of components m €
{1,2,..,30} was determined by 10-fold cross-validation (CV), h = 0.15 was
fixed. On average all methods perform equally well in terms of mean square er-
ror (MSE) on an independent test data set, with comparable variance. KPLS1
performs best in terms of lowest number of components, followed by KCCA
and KPLSy. When instead the deflation of y-space on the x scores of KPLS1 is
plugged into PLS-U and PLS-WA, one improves to m = 543 and 5+4, respec-
tively. As for the parameters v; and vy we may conclude that the regression
result is fairly insensitive to vo, but that large values of vy cause overfitting.
The use of other kernels, like the polynomial or the sigmoidal kernel, did not
produce better results. The results are similar to LS-SVMs for regression (ker-
nel ridge regression or regularization network [3] with additional bias term)
using the LS-SVMlab software http://www.esat.kuleuven.ac.be/sista/Issvmlab/.
We also tested the methods on the larger, real-world dataset benchmark of
Boston Housing data and observed again comparable performance.
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‘ method | comps. | Mean Square Error || method | comps. ‘ Mean Square Error |

KPCA 25+4 0.3875 4+ 0.0914 KPLSx | 19£6 0.3864 £ 0.0972
KPLS-SVD | 1946 0.3888 £0.1014 KPLSy | 157 0.3908 £ 0.0861
KPLS-WA 205 0.3801 £ 0.0863 KPLS1 3£1 0.3825 £ 0.0879 |

KPLS-U 24+5 0.3778 £+ 0.0812 KCCA 11+7 0.3903 £0.0445 |

Table 1: Comparison of KPLS variants and KCCA, which correspond to forms of
subspace regression in RKHS with different choices of matrix A in (1). Shown are
the number of selected components and test set performance for 100 randomizations.

6 Conclusions

We presented three related methods -PCA, PLS and CCA- in a unified view
from the viewpoint of RKHS regression, where they deliver a suitable subspace
in order to reduce the potentially high number of regression parameters in high-
dimensional feature space. We considered some additional kernel variants of
the PLS case and they all compare to KPCA and KCCA in performance, where
a proper deflation scheme keeps their number of needed components smaller.
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