ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 325-330

Parallel asynchronous distributed computations
of optimal control in large state space Markov
Decision processes

Bruno Scherrer

Cortex & Maia Teams
LORIA
Campus scientifique B.P. 239
F-54506 Vandceuvre-les-Nancy Cedex
scherrer@loria.fr

Abstract. This paper emphasizes the link between parallel asynchronous
distributed computations (PADC) and Markov Decision Processes (MDPs),
which are a powerful generic model for computing optimal control. We re-
view some results arguing that reasonably small state space MDPs can
be solved with PADC. We then propose a solution for extending these
results when the state space is large. This shows that difficult optimal
control problems have natural neural network-like solutions and suggests
a general methodology for constructing neural networks.

Introduction

When introducing their model of neuron, McCulloch & Pitts proved that a
synchronous assembly of simple neuron-like units is capable of performing any
computation that a digital computer can (though not necessarily as rapidly or
conveniently) [3]. The aim of our research is to extend this fundamental result by:
e removing biologically unplausible constraints on this model of distributed
computations by “neural networks” such as the need for synchronicity

e showing, on specific problems, that the “neural network” approach has
computational advantages on the traditional digital approach, such as bet-
ter temporal complexity.

In this paper, we consider the problem of finding an optimal control in a stochas-
tic domain, a problem which is formulated by Markov Decision Processes (MDP).
We show that it can be solved by parallel asynchronous distributed computa-
tions (PADC) and argue that this massively parallel approach is significantly
faster than its sequential version. Section 1 reviews a result by [1] showing that
the computation of a contraction mapping fixed point (CMFP) can efficiently be
done with PADC. Section 2 formalizes the problem of finding an optimal control
with MDPs and recalls that it involves the computation of a CMFP: when the
problem state space is reasonably small, one can use PACD to find the optimal
control. Section 3 extends the use of PACD for large state space MDPs: we
propose and analyse an approximation scheme which only rely on computations
of CMFPs.

1. A link between global and local computations

Consider a network of distributed and asynchronous processing units. In general,
it is difficult to make the link between the local computations and the global
activity of the network. Is is often more complicated when local computations

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 325-330

are not globally synchronized. This section reviews a well-known result about
the computation of a contraction mapping fixed point (CMFP), for which we
can make the link between the local and the global levels. This result is funda-
mental as it stands for a general argument for the remaining of the paper: every
computation that can be characterized in terms of a CMFP can be treated with
parallel asynchronous distributed computations (PADC).

Consider a finite set X, a norm ||.]| on IR*, and a contraction mapping
M : RX — RY, ie. verifying |[M(f') — M(f)|| < v.|lf' = fll with v € [0,1).
It is a well-known result that M has one and only one fixed point f*, that is a
function of IR that verifies

fr=M(f) (1)

In traditional (sequential) computations, a technique for computing the fixed
point f* is to iterate the following process:

Vo € X, f'* (z) = M(f')(2) (2)

Indeed we have f? o f* with an exponential rate of convergence:
IFFE = N < vl = £ <A = £ ®3)

The temporal complexity of this iterative process can be seen as the product of
two terms:

e t;: the time required for doing the iteration given by equation 2

e t2(¢): the number of iterations needed to approximate f* with a given
precision € > 0.

Is is shown in [1] that f* can be computed with PACD. Indeed, the following
process

f(z) & M(f)(x) (4)

can be distributed over all z € X and f will also converge to f*. Furthermore,
these computations need not be synchronized: updates of f(z) for all z € X can
be done in an arbitrary order, or even with different frequencies. If we neglict
communication delays, parallelizing this way might roughly divide the time #;
(thus the global temporal complexity for estimating the fixed point) by the size
|X| of X. For more discussion about the resulting parallel complexity see [1]!.

The computation of a CMFP can be done with PADC and can be signif-
icantly faster (roughly |X| times faster) than the sequential iterative process
described by equation 1. Therefore, any problem that can be formulated as the
computation of a CMFP can be solved more rapidly with PADC than with the
iterative process described by equation 2.

2. Markov Decision Processes

Markov Decision processes (MDPs) [5] provide the theoretical foundations of
challenging problems to researchers in artificial intelligence and operation re-
search. These problems include planning under uncertainty and reinforcement
learning [7].

An MDP is a controlled stochastic process satisfying the Markov property
with rewards (numerical values) assigned to state-control pairs®. Formally, an

1See paticularly part 6.3.5 which describes conditions under which asynchronism can make
the global computation faster than synchronism.

2Though our definition of reward is a bit restrictive (rewards are sometimes assigned to
state transitions), it is not a limitation: these two definitions are equivalent/

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 325-330

MDP is a four-tuple (S, A,T, R) where S is the state space, A is the action
space, T is the transition function and R is the reward function. T is the state-
transition probability distribution conditioned by the control:

V(s,s') € §*,Va € A, T(s,a,s') ef Pr(sit1 = $'|st = s,at = a) (5)

R(s,a) € IR is the instantaneous reward for taking action a € A in state S.

The usual MDP problem consists in finding a policy, that is a mapping
m: S — A from states to actions, that maximises the following performance
criterion, also called value function of policy 7:

"(s) =B Zv (st,7(s0))ls0 = s (6)

It is shown [5] that there exists a unlque optimal value function V* which is the
fixed point of the following contraction mapping, also called Bellman operator:

[B*.f] (s) = max (R(s,a) + 7. ZT(s,a, s').f(s')) (7)

Once an optimal value function V* is computfed, an optimal policy can immedi-
ately be derived as follows:

7w (s) = arg max (R(s7 a) + 7. ZT(S, a, s').V"(s')) (8)

The temporal complexity for solving the MDP problem is the complexity for
computing the optimal value function. The sequential iterative procedure similar
to equation 2 is known as Value Iteration. Section 1 argued that using PADC
would significantly accelerate the computation of an MDP solution. Further
details (such as the temporal complexity on various parallel machine models)
can be found in [1].

3. Addressing large state space MDPs

Even if PADC can accelerate the computation of the optimal value function V*
in an MDP, it might not be sufficient when the state space S is large (or even
infinite). For instance, the theoretical number of required iterations ¢2(€) in order
to approximate V* with precision € can dramatically grow with the number of
states [2]. PADC only diminish the part ¢; of the temporal complexity and this
might not be sufficient for large state spaces.

In this section, we propose and analyse an approximation scheme, state ag-
gregation, which allows to use PADC for large state space MDPs. We begin by
reviewing some recently published foundations for approximation in MDPs. We
then apply them to the state aggregation case and show that it only involves
CMFP on reasonably small spaces.

3.1. Safely approximating an MDP

This subsection reviews some theoretical results by [4] for analysing and itera-
tively improving an MDP approximation.

Consider an MDP M = (S, A,T,R) and an approximation of it M =
(S,A,T,R). Let B* be the exact Bellman operator of M (see eq. 7) and
let B* be the approximate Bellman operator:

[B*f] (s) = max (I/i(s,a) + 7. Zf(s,a, s').f(s')) (9)

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 325-330

Let V* and ¥* be their fixed points. In practice, we would like to compute the

exact value function V* but we can only compute its approximation V*. Tt is
then interesting to evaluate the approa:imation error:

Bapp(s) & |V*(s) = V7 (s)] (10)

The authors of [4] show that the approzimation error depends on a quantity
they call interpolation error:

def * % * *
Bine(s) < |B".V"(s) = B*.V"(s)| = [B".V"(5) = V" (5)| (11)
The interpolation error is the error due to one approximate mapping B* of the
real value function V* ; it measures how the approximate parameters (R(s,a),

f(s, a,.)) locally differ from the real parameters (R(s,a),T(s,a,.)). Indeed, we
can show (see appendix) that for some constant K

Eini(s) < max |R(s,a) — E(s, a)

+K.max ‘T(s a,s') — T(s a,s')

(12)

If Eint(s) is an upper bound of E;,;(s) (e.g. take the bound given by equation

12), then, an upper bound E,p,(s) of Eqpp(s) is the fixed point of the following
contraction mapping:

[E.f] (5) = Eint(s) +ma.x< ZT s,a,8).f(s)) (13)

The authors of [4] also explain how to improve an approximation, i.e. how to
distribute resources for describing the parameters R and 7T over the whole state
space. They introduce the notion of influence Is,(s) of the local interpolation
error of state s on the approzrimation error over a subset Sg C S:

def 0 ES’ESO EGPP(S')

Is,(s) = =0
aEint (5)

Say we add or remove some resources near some state s. This might change the

interpolation error by AFE;,+(s). A gradient argument shows the effect this will

have on the approzrimation error:

A (Z —Eapp(s)> ~ Is,(5).AFine(s) (15)
s'€S

This suggests to remove resotrces where the above quantity is very little and

to add resources where it is big. It is proven that the influence Ig, is the fixed

point of the following contraction mapping:

D6 ={ (iEage + Do (5,555 (16)

where 7.,.(s) = argmax,) T(s,a,s'). Eap,,(s’) (see [4] for more details).

The approzimation error E,p, and the influence Is, are characterized as
CMFPs on state space S. This means that they are as difficult to compute as
the optimal value function in the real MDP M. Next subsection describes a
practical solution to this issue.

(14)

3.2. The state aggregation approximation

In this subsection, we introduce and discuss the MDP approximation with state
aggregation. We apply the analysis of the previous subsection to this approxi-
mation scheme and show that the computations of the approzimation error Eqpp
and the influence Ig, become tractable.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 325-330

Given an MDP M = (S, A, T, R), the state aggregation approximation con-
sists in introducing the MDP M = (S, A,T, R) where the state space S is a

partition of the real state space S. Every element of §, which we call macro-
state, is a subset of S and every element of S belongs to one and only one

macro-state. In addition, every object defined on S can be seen as an object
of S which is constant on every macro-state. The number of elements of S can
be chosen little enough so that it is feasible to compute CMFPs on S. When

doing a state aggregation approximation, natural choices® for R and T are the
averages of the real parameters on each macro-state:

R(s,a) = |‘%| Zse?R(s, a)
.~ (17)
T(s1,a,8) = s}; 'Z(s,s’)e‘s’;x;; T(s,a,s)

We can deduce from equations 12 and 17 an upper bound of the interpolation
error on the macro-state §; € S:

Vs1 € 51, Eint(s1) < Eint(51) = AR(51) + K. Zﬁ(ﬁ,s’;) (18)

s2€S

AR(3) = . max R(s,a) — R(s',a)|

(ssesl

with (19)

AT(51,%) = ;11 TMAX e 122,55 T(s1,a,82) = T (s, a, 52)]
The approximation by state aggregation is particularly interesting because the
approzimation error can be computed with a complexity that is similar to the

one required for computing the optimal control in the approximate model M.
Indeed, as the upper bound of the interpolation error is constant over each

magcro-state, equation 13 becomes a contraction mapping on S (and not any-
more on S):

[B.£]) = Bina(51) + max | 7. 3 B33, 0,5)-1(50) (20)

82
Using the same arguments, the influence of the interpolation error on the approx-
imation for a subset Sy is the fixed point of the following contraction mapping

defined on S:
DA ® ={ 2GR 473 TE 7 (3,95 (21)

When an MDP has a large state space, the approximation by state aggregation
is particularly interesting because it involves computations of CMFPs on the
approximate aggregate state space S. Therefore, all these computations can be
done with PADC, and the acceleration that such an approach provides is as
significant as explained in section 1.

4. Conclusion

In this article, we recall a fundamental theoretical result: any mathematical
function that can be characterized as a contraction mapping fixed point can be

3We want the interpolation error to be as little as possible and we need to verify constraints
such as Zs’\ T(51,a,83) =1
2

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 325-330

efficiently estimated with parallel asynchronous distributed computations. By
making the link between global and local computations, such a result constitutes
an interesting basis for constructing fully-understandable neural networks.

We exploit this result several times throughout the paper in order to propose
efficient neural-like algorithms for finding optimal control in small and large state
space Markov Decision processes. Due to lack of space, we couldn’t describe any
experimental evaluation. We practically used this framework to solve challenging
control problems such as planning a route for a car-like vehicule (controlled by
acceleration and steering-wheel) in a continuous environment Sdetails about this
problem and many other control problems can be found in [6]).

References

[1] D.P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Prentice hall, 1989.

[2] M. L. Littman, T. L. Dean, and L. P. Kaelbling. On the complexity of solving
Markov decision problems. In Proceedings of the Eleventh Annual Conference
on Uncertainty in Artificial Intelligence (UAI-95), pages 394-402, Montreal,
Québec, Canada, 1995.

[3] W.S McCulloch and W.P Pitts. A logical calculus in the ideas immanent in
nerveous activity. Bulletin of Mathematical Biophysics, 1943.

[4] R. Munos and A. Moore. Rates of convergence for variable resolution schemes
in optimal control. In International Conference on Machine Learning, 2000.

[5] M. Puterman. Markov Decision Processes, 1994.

[6] B. Scherrer. Apprentissage de reprsentation et auto-organisation modulaire
pour un agent autonome. PhD thesis, Université Henri Poincaré - Nancy 1,
To appear (January 2003).

[7] R.S. Sutton and A.G. Barto. Reinforcement Learning, An introduction. Brad-
Ford Book. The MIT Press, 1998.

Appendix: derivation of an upper bound of the interpolation error

Eint (51) =

max (R(s1,a) + 7. Z T(s1,a, 32).V*(32)>
89€S
— max <§(sl,a) + 7. Z f(sl, a, 32).V*(32)> ‘

82€S
< max|R(s1,a) — ﬁ(sl,a) + 7. Z (T(sl, a,s2) — f(sl, a, 32)) V7 (s2)
¢ sg€S
< max|R(s1,a) — E(sl,a) + 7. max (Z ‘T(sl,a, s2) — ’f(sl,a,SQ) v (32)|>
a a ocs
< max|R(s1,a) — R(s1,a)| + maxs o |[R(s,a)] . max (Z ‘T(sl,a, $2) — T(s1, @, $2)
a 1-— Y a

89€S

)

