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Abstract

This paper introduces a topological map dedicated to cluster analysis and
visualization of categorical data. Usually, when dealing with symbolic
data, topological maps use an encoding stage: symbolic data are changed
into numerical vectors and traditional numerical algorithms are run. In
the present paper, we propose a probabilistic formalism where neurons
are now represented by probability tables. Two examples using actual
and synthetic data allow to validate the approach. The results show the
good quality of the topological order obtained as well as its performances
in classification.

1 Introduction

The topological map proposed by Kohonen [10] use a self-organization algorithm
(SOM) which provides quantification and clustering of the observation space.
Bishop et al [2] have recently introduced a latent-variable density model called
Generative Topographic Mapping (GTM), which is closely related to the SOM.
Kaban et al [9] proposed a method for analysis and visualisation of binary data
based on GTM. In the paper of Lebbah et al [5], we presented specific topolog-
ical maps dedicated to binary data. In this paper we generalize the proposed
approach to categorical data [6]. The model we propose named Categorial Topo-
logical Map (CTM), uses a probabilistic formalism and a learning procedure to
maximize the likelihood function of the data set. In section 2, we present the
CTM algorithm and its learning procedure based on the EM algorithm. In
section 3, we show how estimated probabilities allow to compute a-posteriori
probabilities, allowing CTM to act as soft classifier. The validation of CTM
approach is presented in section 4: two different applications on synthetic and
real data show the ability of CTM to deal with categorial data.

2 Categorical Topological Map (CTM)

Let A = {z;,i = 1..N} the learning data set. We assume that a given obser-
vation z; is a M dimentional vector z; = (z},22,...,2F,...,2M) where the kth

component z¥ is a categorical variable with nj modalities taking its value in
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A = {&b €5, ...,fflk}, such as each observation z; is thus, a realization of a
random variable which belongs to A; x Az x ... x Ap;. We assume also that
the M categorical components of a given observation z are independant. Un-
der this assumption p(z) = [[A_, p(z*) where each p(z*) is a one dimensional
table which represents the probabilities of the n; modalities of A;. The inde-
pendency assumption is necessary for computation purpose, nevertheless results
obtained on real data for with this assumption is usally false, show the robust-
ness of CTM. The topological order and the estimated probabilities have high
quality. The goal of this paper is to present a new topological map dedicated
to these categorical data. As for the traditional topological maps, the map C
has a discrete topology defined by an undirect graph. Usually this graph is
a regular grid in one or two dimensions. We denote Nypeyron the number of
neurons in C. For each pair of neurons (¢,r) on the map, the distance d(c, ) is
defined as the shortest path between ¢ and r on the graph. In the following,
we introduce a kernel positive function K (|61|im K (6) = 0) and its associated
—00
family K¢ parametrized by T : Kp(6) = [1/T|K(6/T), which controls the size
of the neighborhood. Following Luttrel [8], Kaban [9] and Anouar et al [1], we
introduce a probabilistic formalism to deal with topological map dedicated to
categorical data. We assume that the map C is duplicated in two similar maps
C1 and Cy provided with the same topology as C. At each neuron ¢; € Cy, we
associate M probability tables denoted by p(z*/c;) where (k = 1...M). The
kth probability table is defined by the ny values of p(z* = f;?/cl), (j = L.ng).
As before, the probability p(z/c;) can be expressed under the independency

hypothesis of its component as : p(z/c1) = Hi\il p(2¥/e1). For each neuron
c1, this expression describes the observations generated by c¢;. We assume that
each neuron ¢; of C; is a distortion of a neuron ¢s of C and this distortion is de-
scribed by the probability p(ci/c2). In order to introduce a topological order we
assume that: p(ci/c2) = [1/Te,)|Kr(d(c1,ca)), where Te, = 3, cc, K7(0(c2,7)).
Under the ”Markov” property : p(z/e1,ca) = p(z/c1), the probability distribu-
tion of the observations generated by a neuron c» of Cs is a mixture of prob-
abilities completely defined from the map and the probability tables p(z/ci),
p(z/c2) = 3. o, plci/ca)p(z/c1). Finally, the probability p(z), is defined on
Cyas: p(z) = )., cc, P(c2)p(z/c2). In this expression, p(cy) represents the a pri-
ori probability of the neuron ¢;. The aim of the learning algorithm is to estimate
all the parameters of the model. These parameters are: the Nyeyron parameters
02 = p(c2) and for each neuron c¢; the different values 9;?’61 = p(z* = fjl?/cl).

In the following we denote : %1 = {Gf’cl,j =1...n} and 6° = Upf*¥° the
parameters which define neuron ¢;. We assume that the N observations of the
learning set A are independant and generated according to p(z). The learn-
ing procedure estimates the model parameters by maximizing the likelihood of
the observations: p(zi,2s,...2n) = [[; p(zi), for this purpose we use the EM
algorithm (Dempster et al (1977)). Since our model suggests that the observa-
tions are generated by two cells ¢; and c;, we introduce, as hidden variables,
the boolean variables x> = 1, if z; is generated by ¢; and ¢; and is equal to
0 otherwize. So each observation z; is associated a hidden variable y; whose
components are the x7"“. The application of EM gives rise to the iterative

algorihtm of CTM, which for a given value of T' maximizes the likelihood of
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A. In order to present this algorithm, we define the conditional probabilities
p(ca2/z;) and p(c1,ca/zi), which can be expressed as:

_ 07 Kr(6(c1, c2))p(zi/c1)

Pl ealn) = s o p(as/r) @
ples/z) = Y ple,ca/z) 2)
c1€C

The 2 steps CTM algorithm is expressed as follow :

¢ Intialisation Step : Choose an initial values ;' and 65> for the parameters.

e The iteration step : Compute the current values of p(c1,c2/z;) and p(c2/z;)
by applying equations (1) and (2) and the new parameters using the equations
3 and 4:

6% = w "
ke Zief,c]. p(e1/z;)
v - (@

Zj:l..nk Zier,m. p(c1/zi)

In the last equation 74 ; = {i such that 2¥ = fjk} represents the set of observa-
tions z; for whom the kth component takes the modality 5;“

e Repeat the iterative procedure until convergence.

In this presentation 7' is kept fixed, but 7" is also a parameter of the model
since it is used to compute the probabilities p(¢i/¢2). In order to minimize the
likelihood with respect to T' we can, as in the Kohonen algorithm [10], repeat the
preceding procedure for different values of T' decreasing it from an initilal value
Tinae to a final value T)y,;,. The required value T™ is the one which minimizes
the likelihood function.

3 CTM-Classifier

The map provided by CTM can be used in classification tasks, combining super-
vised and unsupervised learning. If we denote by L = {l;,7 = 1..S} the labels
used for different classes, and if each observation z is assigned to a particular
class l;; the CTM algorithm can be used as a “soft” classifier computing the
a-posterior probaility of each label as :

p(li/z) = Y p(li/e1)ple1/7) (5)

c1€C

i
where p(ci1/z) = >, co, plci,c2/2z). and p(li/c1) = Z—i, n., represents the
number of observations of the learning data set assigned to neuron ¢; by the
assignement function x(z) = argmax, p(ci/z) from which n% have label /;. The
accuracy of these probabilities depend both on the size of the set learning data
set and on the topological order.
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4 Experiments

In the following we used Categorical Topological Maps (CTM) for an automatic
classification of two distinct samples. The first experiment deals with artificial
data, which have been created for comparison purposes (Leich et al [7]). Us-
ing this data base allows to cmpare CTM with the performances provided by
several cluster algorithm dedicated to binary data. The second experiment is
dedicated to a behavioral survey. This example clearly shows the adequacy of
CTM to perform an accurate analysis of high dimentional data. In the first ex-
periment, the comparison of CTM with other clustering algorithms has been
made using binary data distributed on the web site www.wu-wien.ac.at/am,
(Dolinicar et al [4]). We extract from the benchmark two different data bases
made of 6000 individuals. These data are artificial data simulated for compari-
son purposes proposed by authors; the simulation mimic typical situations from
tourism marketing. The tourists are classified in 6 classes according to their
answer ("Yes” or "No”) to twelve questions. Six different synthetic data bases
with increasing difficulties are available; we select the two most difficult prob-
lems according to their performances computed from Bayes classifier (scenario
5ind, scenario 5dep). Two 2-D topological maps with 5 x 5 neurons were trained
using CTM. At the end, we assign each observation of the data bases on the cor-
responding map using CTM-classifier (formula 5). The comparison with seven
different clustering algorithms (Hard Competitive Learning with Euclidian Dis-
tance (HCL-ED) or Absolute Distance (HCL-AD), Neural Gas NGAS-ED or
NGAS-AD, k-Means and Self Organizing Map SOM) are presented in table 1.
The authors in [4] estimated the classification rate using the learning data set,
for comparison purpose we do the same. Table 1 provides the classification rate
provided by each algorithm together with the theoritical Bayes rate. Clearly
CTM allows approach the theoritical Bayes classification rate. In the second

HCL-ED | HCL-AD k-means | NGAS-ED | NGAS-AD | SOM | CTM | TBR
5ind 71% 83% 51% 1% 74% 51% 85% 89%
5dep 49% 58% 48% 52% 59% 49% 71% 79%

Table 1: Comparison of the classification perfomances reached by CTM and
seven clustering algorithms on the two simulated data sets (scenario 5ind and
scenario 5dep). TBR represent the Theoretical Bayes Rate

experiment we process a behavioral survey of very large dimension. The sur-
vey consists in answers given by individuals and concerning their feeling about
70 words (as death, war, flower, to charm, to buy, gifts...). Each individual
gives a note between ”1” and ”7” for each word; this note represents the feeling
he/she has about the word (”1” stands for a very bad feeling). The data base is
made of 1228 individuals. Each one is represented by a vector of 70 categorical
variables; each variable has 7 modalities. A CTM map with 7 x 7 neurons is
trained using the whole data set. In the following we present some possible way
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to analyze the results of the clustering in order to show the consistency of the
CTM approach. At the end of the learning phase, each neuron is associated
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Figure 1: 7 x 7 Map. Each cell of the grid represents a neuron of the map, in
ecach one we plot the words which have notes with a probability greater than
0.8

with 70 probability tables with seven values corresponding to the probabilities
of the seven notes. In Figure 1, we plot for each neuron the words which have
notes with a probability greater than 0.8. So, for each neuron, the selected
words represent a shared feeling and can give an interpretation of the map.
Looking carefully at the different neurons, reveals that close neurons have simi-
lar feelings; the topological order presents a coherent clustering. If we focus the
analysis to note ”1”, (for each neuron , we look for words whose modality ”1” is
greater than 0.8, this words are undelined in figure 1 ). It can be seen that there
is a concensus of opinion with regard to the word ”war” which is badly noted
by must of the pepole. If the probability is decreased up to 0.6, the word ”war”
appear for each neuron of the map and the word ”death” is mostly associated
to it, this enlighten the general feeling. We now present for the two words ”to

(a)

Figure 2: Topological map giving a posterior probability of the most probable
note.(a): for the word “to charm”, (b):for the word “Flower”. For each cell
the neuron, the number indicates the most probabble note and the gray scale
stands for its probability p(”note” /c1) (white =0, black =1)

charm” and “Flower”, the probability associated with the most probable note.
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(see figure 2). Figure 2.a and 2.b, show a the spacial coherence with respect to
the note. The two maps present similar patterns enlignting the strong corre-
lation linking the two words. In the present paper we choose some few words
which show the ability of CTM to extract some information embedded in the
survey. As the CTM map summarize a large amount of information, more com-
plex analysis can be made using computed probabilities.

5 Conclusion

In this paper, we presented a new algorithm dedicated to topological maps and
categorical data. For this purpose, we used a probabilistic formalism which
allows to maximize the likelihood of the data. This formalism allows to define
an assignement function based on a-posteriori probability. We applied CTM on
two data bases with different level of complexity; these experiments prove the
ability of CTM to deals with classification and visualization tasks. If we look at
these data bases used, we can see that one is made of independant categorical
variables when the two others used dependant categorical variables. Though
the assumption is necessary for computation purpose, it is interesting, looking
at results, to see that good results (topological order, estimated probabilities)
can be obtained when this assumption is not verified.

Acknowledgement: The authors would like to acknowledge Ludovic Lebart (Direc-
tor of research at CNRS) for providing us the second data base, and making useful
comments about the results.
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