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Abstract. This paper presents a three steps methodology for predicting
the failure shear effort in concrete beams. In the first step, dimensional
analysis is applied to obtain several sets of dimensionless variables; in the
second step, functional and neural networks are used to estimate a rela-
tion between those variables and, in the last step, the failure shear effort
is recovered from the relations learnt. Finally, the performance of the
methodology was validated using data from shear strength experiments.

1 Introduction

Traditionally, structural analysis of the elements of reinforced concrete has been
accomplished empirically, and also employing theoretical formulas based on the
experimental designs and the results obtained from them. One property of re-
inforced concrete, shear strength, follows analogous developments. During the
last 50 years, several experiments [6, 10] allowed to fit theoretical models and
to act as a base for obtaining the formulas of the several available codes and
recommendations [1, 9] which limited predictive capability guarantees, how-
ever, enough structural security. In these experimental tests, the fundamental
element is the beam, which is subjected to the action of increasing loads. The
beam presents resistant mechanisms to the flexure and shear efforts originated
from these loads. If an adequate selection of the appropriate variables involved
is done, the failure shear effort of the beam could be predicted. In this case,
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Figure 1: Variables involved in failure shear effort

the principal variables playing a role are: a) the concrete strength (fc, MPa),
b) the yield strength used as reinforcement (fy, MPa), c) the longitudinal rein-
forcement ratio in the shape of bars (ρl, %), d) the vertical shear reinforcement
ratio in the shape of stirrups (ρv, %), e) a series of geometrical parameters
such as the depth of the member (d,m), its width (b, m) and the shear span to
depth ratio (a/d, adimensional) and, f) finally, the failure shear effort (V , kN).
The name of each variable together with their units are shown in parenthesis.

Fig.1 a) shows the reinforcement before manufacturing the beam. Fig.1 b)
shows the meaning of some of the variables detailed above. The experimental
data used in this work belong to transversal reinforcement beams, and can be
recovered from the database of the University of Illinois at Urbana-Champaign
(Shear Data Bank, http://cee.ce.uiuc.edu/Kuchma/sheardatabank/). The avail-
able set of experimental data allows the use of artificial intelligence techniques,
such as neural and functional networks. These networks have been extensively
used for many years and they have been revealed as useful tools to derive non-
linear relations between the input and the output variables involved in a given
problem [2, 5, 8]. Therefore, they can be used to estimate the non-linear map-
ping g relating the previous variables as expressed by the following equation:

V = g(b, d, fc, fy, ρl, ρv, a/d) . (1)

Moreover, the Π–Theorem, a fundamental theorem of dimensional analysis,
can be used to find a simpler equivalent relation of g with a reduced set of
dimensionless variables that reproduce the same physical relation.

In this work, the failure shear effort has been estimated using a three steps
methodology based on dimensional analysis and functional and neural net-
works. In a first step, dimensional analysis is employed to reduce the dimension
of the input space, using a set of dimensionless variables instead of the original
variables. In a step further, functional and neural networks are used to learn
the function that relates these variables, and, in the last step, the failure shear
effort, V , is recovered from the function learnt.

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 251-256



2 The proposed methodology

For the sake of simplicity, consider a problem with n − 1 input variables,
X1, · · · ,Xn−1, and one output variable, Xn. This set of variables is represented
using s fundamental magnitudes, M1, · · · ,Ms. The proposed methodology will
be applied as follows:

First step: Obtaining the dimensionless ratios. First, the number of
input variables will be reduced. The following algorithm is automatically ap-
plied to determine all the sets of dimensionless ratios ensuring that the number
of ratios is less than the number of variables:

1. Write the variables in terms of fundamental magnitudes. The variables
are expressed in terms of the fundamental magnitudes as:

Xj =
s∏

i=1

M
aij

i ; j = 1, 2, . . . , n, (2)

where aij are the exponents associated with variable j, and the funda-
mental magnitude i. The elements aij form the matrix As×n shown in
Table 1.

Table 1: Matrix A: Representation of the variables in terms of fundamental
magnitudes.

X1 X2 . . . Xn

M1 a11 a12 . . . a1n

M2 a21 a22 . . . a2n

. . . . . . . . . . . . . . .
Ms as1 as2 . . . asn

2. Determine the number of dimensionless ratios. The Buckingham Π–
Theorem, a fundamental theorem used in dimensional analysis [3, 4],
allows to determine the number of dimensionless ratios involved in a
given problem. This theorem says that there exist n − r dimensionless
monomials by means of which the problem can be represented being r
the rank of the matrix A.

A submatrix C of A leading to the rank is calculated. The indices of the
columns (input variables) of the matrix A that form the submatrix C
compound the set B, analogously, the set F is formed by indices of rows.

It is necessary to choose the variables among the n − 1 input variables,
so that only one of the dimensionless ratios would contain the output
variable in order to recover it later.
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3. Reduce dimensionality. Build a matrix B by removing from A the rows
not in F and the columns in B.

4. Change basis. Calculate the matrix D = C−1B, that gives the variables
in terms of the new basic variables (those in B).

5. Build the dimensionless ratios. Using the Π–theorem, the ratios are se-
lected as:

πk =
Xk∏

�∈F
(X�)d�k

;∀k �∈ B (3)

where d�k are the elements of matrix D.

It is important to notice that, in the step 2 of this algorithm, several subma-
trices C could be selected leading to different sets of dimensionless ratios. So,
the algorithm is automatically repeated from step 2 until all the possible sets
are obtained.

Second Step: Estimating the dimensionless output. Once the dimen-
sionless ratios are known, neural and functional networks are employed to esti-
mate the dimensionless ratio which includes the dimensional output, πq, using
all the others ratios as inputs, i.e., the function g′ will be estimated as follows:

πq = g′(π1, π2, . . . , πq−1). (4)

Third Step: Recovering the dimensional output. The last step consists
in recovering the original dimensional output Xn, using equation (3), from πq

as:

Xn = πq

(∏
�∈F

(X�)d�n

)
(5)

3 Simulations

The proposed methodology was applied to estimate the failure shear effort
(V ) of a concrete beam. After applying the first step, the sets of ratios in
Table 2 were obtained. Functional and neural networks were used to estimate
the dimensionless output ratio, π6. For the case of functional networks, the
following minimization problem was proposed:

Minimize Q =
m∑

i=1

(
π6i −

d1∑
k1=d01

d2∑
k2=d02

· · ·
d5∑

k5=d05

Ck1,k2,···,k5π
k1
1i πk2

2i · · ·πk5
5i

)2

(6)
where Ck1,k2,···,k5 are the parameters to learn, m is the number of samples,
d0t and dt with t = 1, 2, 3 and 5 were obtained experimentally as 0 and 2,
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Table 2: Sets of dimensionless ratios
Number of the set π1 π2 π3 π4 π5 π6

1 d
b

fc

fy
ρl ρv

a
d

V
b2fy

2 b
d

fc

fy
ρl ρv

a
d

V
d2fy

3 d
b

fy

fc
ρl ρv

a
d

V
b2fc

4 b
d

fy

fc
ρl ρv

a
d

V
d2fc

respectively, while d04 and d4 were obtained as −1 and 1. The high number of
parameters of this model may overfit the network, so a restriction was added
permitting only combinations of two variables. Moreover, for the sake of com-
parison, functional and neural networks were also employed to estimate the
original function g in equation (1). In this case, the same functional model was
employed (without using dimensional analysis), however, better results were
obtained with the following approximation:

Minimize Q =
m∑

i=1


 7∑

j=1

dj∑
k=d0j

CjkXk
ji


 (7)

where Xji is the i sample of the j original input variable, d0j and dj with
j = 1, 2, 3 and 6 were obtained experimentally as 0 and 2, respectively and
with j = 4, 5 and 7 were obtained as −1 and 1.

In the case of neural networks, a multilayer perceptron with several neu-
rons in its hidden layer was used employing or not dimensional analysis. The
best results were obtained using 5 hidden neurons, a regularized mean squared
cost function, the Levenberg-Marquardt learning algorithm and the Mackay’s
bayesian framework to adapt the hyperparameters.

Table 3: Mean Normalized Mean Squared Errors over 30 simulations for Func-
tional Networks (FN) and Neural Networks (NN)

Approach
0 1 2 3 4

FN Test 0.1789 0.0988 0.5283 0.1277 0.2535
Validation 0.8460 0.5962 0.5768 0.3943 0.5076

NN Test 0.1361 0.2291 0.2197 0.2212 0.3461
Validation 2.9265 1.4570 2.8299 1.1047 1.1943

A ten-fold cross-validation was employed, running 30 simulations using dif-
ferent initial values. Moreover, a new set with 12 samples was obtained later
from [7] allowing to accomplish a further validation of the trained systems. The
mean results obtained for test and validation data using functional networks
(FN) and neural networks(NN) without using the proposed methodology (ap-
proach 0) and using it (approaches 1 to 4) are shown in Table 3. It can be
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observed that approaches 1 to 4 achieve better validation results than the ap-
proach 0. Moreover, the test results are better for approaches 1 and 3, when
functional networks are used. Also, the functional networks obtain better re-
sults than the neural networks. Furthermore, the results obtained using the
ACI theoretical formulas [1] are 0.44 and 3.15 for test and validation data,
respectively, so the methodology proposed also improves these results.

4 Conclusions

In this work, the failure shear effort was estimated using a new methodology
based on dimensional analysis and functional networks. The proposed method-
ology uses dimensional analysis to reduce the number of inputs of a functional
and/or neural networks showing a better performance than when they are ap-
plied without the previous step of dimensional analysis.
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