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Abstract. Image segmentation is an established necessity for an improved 
analysis of Magnetic Resonance images. Neural network-based clustering has 
been shown in literature to yield good results, yet the possibility of 
transforming the input feature space in order to enhance the clustering process 
has gone largely unexplored. In this paper we focus on brain imaging and 
present a new algorithm for unsupervised segmentation of multi-spectral  
images, based on the research, through neuro-fuzzy techniques, of an 
optimized space in which to perform clustering. Tests performed on both real 
and simulated MR images show promising results, encouraging the 
application to different medical targets and further investigation.  

 
 

1. Introduction  
 
The introduction of advanced medical imaging techniques has dramatically improved 
the quality of brain pathology diagnosis and treatment. In particular, Magnetic 
Resonance imaging (MRI) allows the acquisition of three-dimensional, high 
resolution and highly detailed images of brain anatomy, with unparalleled soft tissue 
contrast with respect to other medical imaging modalities.  
To fully exploit the potentialities of these medical imaging techniques, the 
development of image processing tools such as segmentation, which allows the 
identification and quantitative evaluation of brain structures and lesions in a non-
invasive manner, is fundamental.  
Many approaches to MRI segmentation, both supervised and unsupervised, have been 
proposed in literature [1]. Among the unsupervised segmentation techniques, both the 
K-means algorithm and its fuzzy equivalent, C-means, have been employed, as well 
as unsupervised learning neural networks. In particular, neural network-based 
clustering has yielded good results [2][3], yet the possibility of transforming the input 
space in order to facilitate segmentation has been largely unexplored.  
In this paper we propose a new, unsupervised algorithm for multi-spectral MR image 
segmentation. In our method, classical Kohonen map-based clustering is enhanced 
through the search of an optimized space in which to operate the clustering.  
The paper is organized as follows: in Section 2, system architecture is described; 
while results are reported in Section 3. Conclusions and possible further 
developments are illustrated in Section 4.  
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2. Methodology 
 
In the proposed technique, each input is a slice of the image dataset, which undergoes 
a number of sequential processing steps: preprocessing, clustering, error 
backpropagation, and classification. Magnetic resonance imaging is a tomography 
technique, i.e. each image comprises a number of slices, each corresponding to a 
given slice of tissue; following the pulse repetition period (TR) and parameters related 
to the applied radio-frequency magnetic field, it is possible to obtain images with 
different contrast, each reflecting a different parameter regulating the relaxation of the 
excited tissues. In this paper, we consider multispectral datasets comprising three 
images (also referred to as channels) weighted by spin-lattice time constant T1, spin-
spin time constant T2 and proton density (PD). After the clustering process, each 
cluster is manually interpreted and assigned to a proper tissue class.   
 
2.1 Preprocessing  
 
Preprocessing aims at improving the quality of each input image and reducing the 
computational burden for subsequent analysis steps. Specifically, since skull and 
other extrameningeal tissues are usually of scarce clinical interest in most MRI 
studies, they were discarded, along with the background, as described by the 
preprocessing technique proposed in [4].  
Subsequently, each voxel in the input image is assigned a six-dimensional feature 
vector, which comprises the gray level intensities of the corresponding pixel in the 
three channels, as well as the mean intensities calculated in a 3x3 neighborhood of the 
pixel in each channel. This aims at compensating the effects of random noise, while 
minimizing the loss of resolution. All feature vectors are normalized prior to 
segmentation by subtracting the mean and dividing by the standard deviation, where 
the mean and standard deviation are estimated independently for each slice. 
 
2.2 Clustering 
 
The proposed network architecture consists of two fully interconnected layers; the 
first layer, composed of computing elements (neurons) of order zero (perceptron) with 
linear activation function, is followed by a second layer of computing elements of 
order two (radial basis), with gaussian activation function.   
Let X be the input pattern, H the output of the hidden layer and Y the output of the 
network. Moreover, let W and C be the weight vectors of the first and second layer, 
respectively. In order to jointly optimize both layers, training is carried out in two 
steps [5]. In the first step, the second layer is trained using the standard Kohonen rule 
for unsupervised learning (while the first layer is not trained): at each iteration, the 
winning neuron’s centers are adjusted according to  
 
 ( )ji c i jic hη= ⋅ − c     (1) 

 
whereas the weights of the neighboring neurons are updated according to 
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 ( )ji c neigh i jic f hη= ⋅ ⋅ − c     (2) 

In fact, though the idea of preserving input space topology in network output space 
topology has limited sense in a 2x2 network, we have found that this update does 
enhance the system’s performance.  
Contrarily to the second layer, the first layer is trained using error back-propagation. 
In supervised learning schemes, the error is given by 
 

 
2

p
p

E α=∑ p pY - T     (3) 

 
where Tp is the user-supplied target associated to the pth training pattern and αp 
represents the relative importance of each training pattern (here assumed equal to 1 
for every pattern). In this case, the target is determined by associating each input 
pattern with the winning neuron; so that, supposing j the index of the winning neuron,  

P
kt is equal to 1 for k=j and 0 otherwise. Intuitively, this corresponds to searching a 

linear transformation of the feature space, requiring that input patterns be as close as 
possible to the associated centroids. The hidden layer is then trained using the 
classical delta rule for training. In particular, it can be derived from equation (3) that 
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where p denotes the pth input pattern and  
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where j

p pz = H - C j
p . The weights of the first layer are then updated according to  
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In the present study, the first layer consists of 4 computing elements with linear 
activation function. Thus, not only the hidden layer performs a linear transformation 
of the input space, but it also reduces the dimensionality of the feature space. This 
allows obtaining, in average, better experimental results than when all features are 
retained in the clustering step. The second layer has 4 computing elements, arranged 
in a 2 by 2 topology. Four clusters are sufficient to discriminate between the three 
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tissue classes (white matter, gray matter and cerebrospinal fluid) that can be found in 
normal brain parenchyma (i.e. after the removal of extrameningeal tissues).  
The network is separately trained for each slice to account for intensity 
inhomogeneities across different slices by randomly selecting 2000 pixels per slice as 
training set. A Gaussian neighborhood function fneigh equal either to 0.01⋅e (lateral 

and underlying neighbors) or 0.01⋅e-2 (diagonal neighbor) is used for unsupervised 
training. An adaptive learning coefficient, initially set to 0.0001 for the first layer (ηw) 
and 0.001 for the second one (ηc), is used: if the error increases, η is decreased and 
weight values are set to those of the previous iteration, whereas if the error decreases 
below a predefined threshold, η is increased. Finally, training is stopped when a 
predetermined number of iterations, equal to 500 in this study, is reached.  
 
3 Results 
 
In this section, the results obtained using both simulated MR images and normal 
volunteers’ scans are illustrated.  

 
3.1 Simulated MR images 
 
The use of simulated images eases the task of validating a segmentation method as a 
reproducible and known ground truth is available. Moreover, it allows to separately 
test the proposed segmentation method stability against intensity inhomogeneities and 
random noise [6]. The simulated datasets were made available by the Brainweb 
institution1 [7]. All multichannel datasets comprise 181x217, 12 bit gray level T1-
weighted, T2-weighted and PD-weighted images with 1.0 mm slice thickness.  
For the purpose of this study, three reference slices were selected. Since in this case 
the ground truth is known a priori, each cluster is associated with the most probable 
tissue class using maximum likelihood estimation; in this way, an upper bound to the 
performance of the proposed clustering technique is determined. A representative 
slice is shown in Figure 1. To evaluate the results, 20 trainings for each reference slice 
were performed with different random initial conditions for the centers of the neurons 
in the second layer (a diagonal matrix was used to initialize first layer weights). 
 

 
Figure 1. A representative slice from the simulated datasets (noise 5%, intensity inhomogeneity 
0%) and the corresponding segmentation. (a) T1-weighted image, (b) T2-weighted image, (c) 
PD-weighted image, (d) result of the clustering procedure, (e) ground truth. 

                                                 
1 available online at http://www.bic.mni.mcgill.ca/brainweb/ 
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It is worth noting that, with very low levels of noise, better results can be obtained 
excluding mean intensities from the input features. In Figure 2 the percentage of 
correctly classified pixels with and without a post-processing filter (consisting simply 
in the re-classification of isolated pixels) are shown; though numerical results increase 
only modestly with the post-processing filter, the visual quality of segmentation is 
enhanced (figures omitted for brevity). Typical standard deviation values (for trials 
with equal noise and intensity inhomogeniety) were around 0.5 %, and in any case 
never above 1.5%. 

 
3.2 Real MR images 
 
The proposed technique was also validated on MR images of normal volunteers. A 
representative dataset, shown in Figure 3, was provided by the Center for 
Morphometric Analysis at Massachusetts General Hospital2.  
 

 
Figure 2. Clustering results with varying levels of noise and intensity inhomogeneities. 

 

  
Figure 3. Results of the clustering procedure on a slice from the normal volunteer’s scan. (a) T1-
weighted image, (b) T2-weighted image, (c) PD-weighted image, (d) clustering. 

                                                 
2 available online at http://neuro-www.mgh.harvard.edu/cma/ibsr 
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All scans were acquired at the NMR Center of the Massachusetts General Hospital 
with a 1.5 Tesla General Electric Signa MR system. Three spin echo sequences were 
considered in this study: a T2-weighted (TR 4200/TE 104.32/flip angle 90°), a T1-
weighted (TR 700/TE 20/ flip angle 90°) and a PD-weighted (TR 2500/TE 13.04/flip 
angle 90°) sequence. All slices are 256x256, 8 bit gray level images with 0.859375 
mm inplane resolution, 6.0 mm thickness and 1.0 mm interslice gap. 
 
4 Conclusion and future works 
 
In this paper, a novel approach to the segmentation of multispectral cerebral MR 
images is proposed, which enhances the unsupervised clustering capabilities of a 
Kohonen self-organizing map with a linear transformation of the input space. The 
proposed technique was evaluated on both simulated and real MR images, showing 
promising performances both from a qualitative and quantitative point of view. 
Furthermore, being the proposed technique fully unsupervised, and the results 
substantially independent of the initial network conditions, it constitutes an effective 
remedy to the issue of intra- and inter-observer variability, which is a major drawback 
of supervised or manual segmentation techniques.  
Future efforts will be devoted to the further testing of the proposed technique, both 
from a qualitative and quantitative point of view, and to its application to the study of 
brain pathologies, in particular to brain tumor diagnosis and follow-up. 
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