
Modelling of Biologically Plausible Excitatory 
Networks: Emergence and Modulation of 

Neural Synchrony 
 
 

K. Kube1, A. Herzog1, V. Spravedlyvyy1, B. Michaelis1, 
T. Opitz2, A. de Lima2, T. Voigt2 

 
1Institute of Electronics, Signal Processing and Communications, 

2Institute of Physiology, Otto-von-Guericke-University Magdeburg, 
P.O. Box 4120, D-39016 Magdeburg, Germany 

kkube@iesk.et.uni-magdeburg.de 
 
 
Abstract. To emphasize the electrical nature of information processing in the 
brain we use a compartmental model of single neurons. The realistic simulation 
of wave-like activity in the recurrent excitatory network is similar to the 
intracellular activation in rat embryonal cerebral cortex cultures [1]. The natural 
structure of the network is reproduced by including interactions between 
different functional neurons. We start by reproducing spontaneous electrical 
activity of single neurons. After massive simulations selective influences are 
comparable to in vitro measured activity. We show adaptation of the network 
behavior by introducing external stimulation. 

 
 
1 Introduction 
 
Neurons of the embryonic cerebral cortex of vertebrates develop synchronous 
oscillatory network activity during the second week in culture. It is assumed that this 
early network activity is necessary to form a functional synaptic microcircuitry with 
self-organizing properties [1, 2], but the mechanisms involved are still unclear. Here 
we reproduce the biologically realistic parameters of the early cortical culture in a 
computer simulation. We hope to be able to make previsions about hidden parameters 
contributing to the network dynamics and to uncover hints for better design and 
initialization of artificial neural networks.  
There are different approaches for modelling neural network activity, e.g. 
phenomenological descriptions on a systemic level [4], coupled oscillators like 
Wilson-Cowan-oscillators [8] or computationally efficient models such as the 
Integrate-and-Fire-model [6]. To adapt the simulation to experiments, we use a more 
realistic model of individual cells of different types with unique behaviors and 
connecting patterns. We focus on two types of neurons, namely glutamatergic-like 
projection neurons and GABAergic-like interneurons. Glutamatergic neurons are 
normally excitatory and more frequent than GABAergic interneurons, that are 
normally inhibitory in the adult networks. In the early cortical network GABAergic 
interneurons are however depolarizing [2] and are required for the development of 
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oscillatory synchronous activity, probably working as integrator elements for 
synchronization [1].  
 
 
2 Model Description 
 
2.1 Neuron Model 
 
We use a compartment model (Fig.1a) to simulate the neuronal behavior numerically 
[5]. A modeled neuron consists of two coupled cylindrical compartments that 
correspond to different subcellular compartments (Fig.1c). An input compartment 
simulates the signal integration of dendrites and contains several input synapses with 
specific time constants. In the excitable compartment (soma and axonal hillock) the 
impulse generation is produced by voltage-dependent active Hodgkin-Huxley Na+ and 
K+ channels. The axon is modeled by spike transmission with adjustable delay.  
  

 
 

 

  

 

 
Fig.1 Neuron model. a) compartment model with voltage-dependent ion channel b) 
spontaneous activity clamped in real cultures and calculated in simulated networks in single 
neurons (somatic membrane potential), c) dendrite and soma as coupled compartments, d) 
synaptic depression: pre-synaptic spikes, availability of transmitter and post-synaptic spikes 
 
Empirical pharmacological intervention in cell cultures showed a period of synaptic 
depression after each burst activity, that is probably caused by exhaustion of 
neurotransmitters at the synapse. This depression is the only attenuation of network 
activity in this network. An economical way to implement the depression in our 
model is to utilize an additional compartment reflecting the amount of transmitter 
available. If this amount is below a critical threshold spikes are not transmitted 
(Fig.1d). 
 
 
 

 
glut. 

Na+GABA 

HHHH

K+

dendrite soma

b)

d)

Ra

C

extracellular 

intracellular

R gion

Eion
Em 

cell membrane 

Vma) 

c) 
pre-synaptic spike train

post-synaptic spike train

transmitter and threshold

Volts

-0.1
-0.05

Volts

-0.1
-0.05

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 379-384



2.2 Network Model 
 
To achieve a recurrent probabilistic network, we design populations of neurons and 
their connections stochastically. A section of the network is generated by adding a 
certain number of neurons with arbitrary positions. Unlike regular matrix-patterns 
where the number of units is limited to certain numbers, any density of neurons may 
be chosen in the arbitrary distribution used here. Considered as a spatial distribution, 
these set of positions can be de-clustered, scattered uniformly over the section’s area 
with adaptive rules in terms of self-organizing-maps according to [7], which can be 
used to configure the spatial entropy of the distribution. This is done separately for 
each type of neurons, to homogenize the structure and prevent overlying of neuronal 
positions. 
To generate the synaptic couplings in the network, we connect the neurons according 
to a probability model. For each pair (ni, nj) of neurons we calculate the probability of 
a possible connection between them. Each neuron has a terminal region defined by a 
random set direction and distance (axon length, dmin < d < dmax). Inside this terminal 
region the probability of a connection decreases with distance from the center by 
Gauß-Laplace distribution (standard deviation Φ). 
 

                                                                     

 
 
Fig.2 Network model. a) image of a real culture b) insertion of neurons, c) de-clustering  
d) generation of connections 
 
The number of established connections in biological networks increase in time by a 
sigmoidal distribution (center tm, scale factor c). To simulate this effect, each 
connection gets a time stamp, in which the activation time is stored. During 
simulation the connections are established by a script. 
 
2.3 Parametrizing the Model 
 
The free parameters for each of two different neurons (glutamatergic and 
GABAergic) can be set individually. Glutamatergic cells are numerous (100 in test 
region) and small (soma size 10.0 x 10.0 µm; dendrite size 2.0 x 50.0 µm) and make 
synapses with small time constants (tau = 3.0 ms). Additionally this cells discharge 
spontaneously (Poisson-distributed intrinsic spontaneous activity [3]). GABAergic 
cells are bigger (soma size 30.0 x 30.0 µm; dendrite size 2.0 x 200 µm), but less 
numerous (0-5 in test region) and have synapses with larger time constants (tau = 
20.0 ms). 
The parameter of connections can be configured separately for each source target cell 
type combination. GABAergic neurons have larger terminal region and also receive 
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more inputs (glutamatergic to glutamatergic µ=0.1mm, σ=0.1mm; glutamatergic to 
GABAergic µ=0.2mm, σ=0.2mm; GABAergic to glutamatergic µ=0.2mm, σ=0.2mm; 
GABAergic to GABAergic µ=0.4mm, σ=0.1mm). This values will be gradually 
optimized according to physiological experiments and literature.  
 
 
3 Simulation and Results 
 
3.1 Emergence of Wave-Like Activity by Coupling Neurons 
 
First we simulate the network with a varied number of integrated GABAergic 
neurons. In Fig.3 three different network configurations and their outputs with 100 
glutamatergic and zero, two and four GABAergic neurons are shown.  
 

 

 

 

 

 

 

 

 

 
 
Fig.3 Influence of GABAergic neurons to the dynamic of network, a variation of 100 
glutamatergic neurons and 0, 2, and 4 GABAergic neurons. a) network structure, b) network 
activity (average somatic membrane potential in Volts) and a section of the history, c) cross-
correlograms between spiketrains of between two randomly selected glutamatergic cells. 
 
The network unfolds an intrinsic behavior when gradually coupled. In a network 
without GABAergic neurons no synchronous behavior can be seen. A distinct 
synchrony in behavior can be observed with rising number of GABAergic neurons. 
They are assumed to act as activity-integrators by above described properties [1]. 
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A rhythmic wave-like dynamic emerges with a stable frequency, which depends on 
the depression time of the glutamate synapses, and amounts in biological early 
neurons to approximately one time per minute. 
Firing neurons tend to synchronize their locally stored historical information, that in 
this case reflects the time point of reactivation state after synaptic depression. 
Neurons which are firing asynchronously (out of phase) with the wave-like dynamic 
state will be attracted to synchrony. This specific wave-like activity of synchronous 
firing is a emergent network characteristic. 
 
3.2 External Stimulation 
 
We can influence the rhythm by adding an external rhythmic input. For this purpose 
we define a receptive area which influences a subset of the neurons (Fig. 4a). The 
stimulation is achieved by adding extra synapses to the neurons inside the predefined 
receptive area. 
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Fig.4 External stimulation of the network. a) local excitation areas, b) without stimulation 
(average membrane potential, network activity, left and right stimulus spike trains), c) 
synchronous (in-phase) stimulation, d) asynchronous (anti-phase) stimulation 
 
In this simulation we use two of this receptive areas, localized at opposite border 
regions of the network. Each one is covering about five percent of the network and is 
feeding all neurons in these areas with stimulus patterns (Fig 4 b-d) 
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This local stimulation modifies the activities of neurons in the whole network. In 
Fig.4 it can be seen how the stimulation progress influences the network behavior.  
With just one excitatory pulse or several synchronous pulses the neurons are firing 
accumulated activity in the phases between the network bursts (Fig.4c black arrow). 
Applying several excitatory pulses (asynchronous, in phase opposition excitatory) 
leads to a forced de-synchronization and split up of the network (Fig.4d gray arrow). 
 
 
4 Conclusion and Discussion 
 
These are the first steps of modeling this network. We hope that biological 
experiments give further suggestions for improving this model. The appeared 
oscillation emerges as a network quality with GABAergic neurons without global 
clocks like pacemaker neurons. 
In the next step we will add dynamic subcellular mechanisms like the development of 
glutamatergic receptors (from “silent” synapses to functional ones) and dynamic 
Hebb-like adaptation behavior. The stimulation patterns of the network can be 
extended toward images, to investigate the synaptic initialization and explore its 
potentialities for applications of associative memory modules. 
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