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Abstract: In this paper we present a new self-tuning procedure for PID 
controllers based on neuro-predictive control. A finite horizon optimal control 
problem is solved on-line, permitting to calculate the tuning parameters of the 
PID controller. The proposed method is implemented on a level-flow pilot plant 
and a comparison with conventional auto-tuning methods is also given. 
 

1. Introduction 
 

Although most of the industrial processes are complex nonlinear systems, they 
are still controlled with classical PID control structures, which are tuned to give good 
results only around a fixed operating point. Under these circumstances, in order to 
obtain the optimal response over the entire operating range, on-line adaptation or self-
tuning of the controller is required, and several methods have been proposed in the 
last decade, e.g. [1], [2], [3]. 

In [1], the existent types of adaptive techniques are classified based on the fact 
that if the process dynamics are varying, then the controller should compensate these 
variations by adapting its parameters. There are two types of process dynamics 
variations: predictable and unpredictable. The predictable ones are typically caused by 
nonlinearities and can be handled using a gain schedule, which means that the 
controller parameters are found for different operating conditions with an auto-tuning 
procedure that is employed thereafter to build a schedule. 

In this paper, a new self-tuning method for PID controllers designed to control 
processes with predictable dynamics variations is presented. The gain scheduling 
principle is replaced by using a neural network based model that is capable to capture 
the predictable dynamics variations of the process. The neural network model is also 
used to develop a neural structure that predicts the future control error caused by 
process dynamics variations. The controller tuning parameters are calculated solving a 
finite horizon optimal control problem that minimizes the predicted control error. 
Real-life experimental results are given for a level-flow pilot plant, which 
demonstrate the practical benefits of this self-tuning method. 
 
 
2. Description of the self-tuning procedure 
 

The proposed self-tuning approach is based on two parallel control structures 
(see Fig. 1) that are synchronized with the reference clock of the predictable dynamics 
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process in closed-loop with a PID controller. 
 

 
Figure 1: Neuro-predictive structure 

The upper structure uses a predictive control loop consisting in a neural predictor 
and a PID controller with adaptive tuning parameters. The predictive structure, with 
the sampling rate Tp, works faster than the real-time control loop supplying the 
predicted control error over a finite future time horizon. The tuning parameters are 
calculated at each sample time instant through the minimization of the predicted 
control error and the obtained values are used to update the tuning parameters of the 
real-time control loop. Thus, the controller parameters are adapted based on the 
predictive optimization of the control system behavior and the desired performances 
can be achieved over the entire operating range. 

 
 

2.1 Process neural model 
 

Neuro-predictive control loop contains a neural network model, which models 
the real process with predictable dynamic variations. The use of neural networks for 
nonlinear process modeling and identification is justified by their capability to 
approximate unknown non-linear systems. A nonlinear model that includes a large 
class of non-linear processes is the following NARMAX model: 

( ) [ ( 1),..., ( ), ( 1),..., ( )]y k f y k y k n u k d u k d m= − − − − − −  (1) 

where f(.) is some nonlinear function, d is the dead time , n and m are the orders of the 
nonlinear system model, u and y being the input and the output of the process. A 
neural network based model, NNARMAX, corresponding to the NARMAX model, 
may be obtained by adjusting the weights of a multi-layer perceptron architecture 
with adequately delayed inputs [4]. The neural network output will be given by: 

)]1(),1([)( −−−= kdkfky N yu , (2) 

where f N denotes the input-output transfer function of the neural network, which 
replaces the non-linear function f in (1) and, u(k-d-1) and y(k-1) have the following 
structure: 
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For a two layer network, the following expression is obtained from equation (2): 
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where n is the number of neurons in the hidden layer, jσ is the activation function for 

the j-th neuron  from the hidden layer, u
jw  the weight vector for the j-th neuron with 

respect to the inputs stored in u(k-d-1), y
jw the weight vector for the j-th neuron with 

respect to the inputs stored in y(k-1), bj the bias for the j-th neuron from the hidden 
layer, wj the weight for the output layer corresponding to the j-th neuron from the 
hidden layer and b the bias for the output layer. Such structures with a single hidden 
layer are considered satisfactory for most of the cases. 

Since all the industrial processes are working in closed-loop, a closed-loop 
identification method has been used to obtain the neural model of the process. In 
order to capture all the nonlinear dynamics of the process, the training data had to be 
attained around several different operating points such that the entire variation range 
of the process output to be covered. For this reason, a stepwise reference was chosen 
and then summed with a pseudo random binary signal generated with a shifting 
register [5]. 
 
 
2.2 Neuro-predictive control loop 
 

In order to obtain the predictable dynamics variations at the time instants k, a 
neural predictor based on the neural-based model of the process was used. A 
sequential algorithm based on the knowledge of current values of u and y together 
with the neural network system model gives the i-step ahead neural predictor: 
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The future control u(k-d+i-1) from (5) is obtained running the neuro-predictive 
control loop. Thus, at time instant k, the predicted output y(k+i) is determined, for 

21, NNi =  where N1 and N2 are the prediction horizons. If Tp is the sampling time 
with which the predictive control loop operates, this must satisfy: TTNN p <<− )( 12 . 

Placing the neural model of the process to operate in the neuro-predictive control 
loop allows for transferring the current state x of the process to the neural predictor 
(Fig. 1) at each time instant k. Thus, at each time instant k, the predicted behavior of 
the process is obtained in the vector form: 

T
pred NkyNkyNky )]()...1()([ 211 ++++=y . (6) 

The process output ypred, predicted by the neural predictor, is used to calculate 
the predicted control error based on the controller set-point. 

Considering the discrete form of a PID controller, 
)2()1()()1()( 210 −+−++−= keqkeqkeqkuku , (7) 
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and the model (5), yields the following equation for the predicted control error: 
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where the vector u(k-d+i-1) is a function of the tuning parameters vector q=[q0 q1 q2]. 
Minimizing the cost function 
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with respect to the variable q, yields the optimal tuning parameters qopt, which 
compensate the process predictable dynamics variations. At the time instant k+1, the 
tuning parameters qopt are transferred to the real-time control loop. 

The self-tuning method has the advantage that it does not imply a pre-tune phase 
because the vector qopt is available after the first sampling period. 
 
 
3. Pilot plant studies 
 

The neuro-predictive self-tuning approach for PID controllers was tested on a 
level-flow pilot plant. The schematic diagram of the pilot plant is presented in Fig. 2. 
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Figure 2: Schematic diagram of the level-flow pilot plant 

The level is controlled using a cascade control structure that has as internal 
variable the feed water flow. The inner loop controls the feed water flow and rejects 
the disturbances caused by the pressure variations in the water pipe. The outer loop 
controller, a PI controller, yields the feed water flow reference signal r2 for the inner 
loop based on the received water level signal. The tank and the inner loop represent 
the plant for the outer controller, which was modelled with a neural network in order 
to implement the developed self-tuning method for the level controller. The following 
non-linear model is available for the tank: 

ghACq
dt
dhA di 21−= . (10) 

The model parameters are: A = 203.4 cm2, A1 = 2.26 cm2, hmax = 13.5 cm, Cd = 0.6. 
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3.1 Neural model of the plant 
 

In order to estimate the parameters of the neural model, a training sequence was 
built such that the process output explores its whole operating range. Thus, a stepwise 
reference summed with a pseudo random binary signal was applied to the real time 
control loop and, by monitoring the control signal u1 and the process output y1, a 
training sequence was obtained. Using the training sequence, a two layer neural 
network was trained off-line. 

Model parameters m, n and d were estimated based on the collected input-output 
data and on the physical structure of the process (the inner flow loop and the tank). 
With a sampling rate of 2sec, it was found that the process has a delay d=2 and m=2, 
n=2. For the training and the validation of the neural network that models the process, 
the software instruments presented in [6] were used. 

In Figure 3, the results of a closed-loop experimental validation of the neural 
model are plotted. 
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Figure 3: Process neural model validation  

 
 
3.2 Adaptive procedure results 
 

The parameters q0 and q1 of the PI controller were obtained by minimizing an 
objective function using an optimization approach. The cost function was taken as the 
mean squared prediction error over a finite prediction horizon, as in equation (9). The 
neural network model identified in the previous section was used to predict the future 
outputs. In order to avoid the saturation of the actuator, the minimization took into 
account the constraints imposed on the control input and controller parameters. 

In order to do a fair comparison with the existing auto-tuning methods, the PI 
level controller was first tuned using the relay method of Astrom and Hagglund [3]. 
Figure 4 shows the resulting real-time closed-loop stepwise responses obtained with 
fixed tuning parameters of the PI controller and with continuous adaptation of tuning 
parameters based on the self-tuning method presented in this paper. In the same 
figure, the control inputs are depicted together with the tuning parameters of the PI 
controller. 
 As seen in the figure, the fixed parameters controller gave a sluggish control 
response. With the neuro-predictive tuning approach, the controller had continuous 
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adaptation of the tuning parameters resulting in a faster control.  
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Figure 4: Comparative results and parameters for the adaptive discrete PI controller 

 
 
4. Conclusions 
 
A neuro-predictive control based self-tuning procedure for PID controllers has been 
developed. The main advantage of the method consists in the on-line adaptation of the 
controller parameters and in the possibility to track different process operating 
regimes. The proposed method has been implemented on a benchmark real-life 
system with good results and a comparison with a classical auto-tuning method for 
PID controllers has also been given. 
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