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Abstract. Many real world problems are given in the form of multiple mea-
surements comprising local descriptions or tasks. We propose that a dynamical
organization of a population of communicating agents into groups oriented to-
wards locally similar clusters of subtasks can identify higher level structure and
solve such tasks. We assume that an agent may compute the compatibility of its
resources with the input descriptions and that it can compare this compatibility
with that of other agents. Based on dynamically updated soft assignment vari-
ables each agent computes its action preference distribution and communicates
it to other agents. Applying theory developed for the competitive-layer model
(CLM, Wersing, Steil, Ritter, Neural Computation 13, 357-387, 2001), a recur-
rent linear threshold network for feature binding and sensory segmentation, we
give constructive conditions on the choice of the agents’ compatibility functions
and dynamical parameters to assure convergence. They guarantee that each agent
unambiguously either decides for an action or not to be active at all. We give an
approximative stochastic algorithm to sample the decision dynamics and discuss
one realized and one proposed example.

1 Introduction

Many of the hard problems in artificial intelligence are of the type to generate or de-
tect global structure of the problem based on local data and descriptions only. Typical
examples are found in image processing, where the data are pixel values and the task
is to segment and group them to perceptually consistent entities like edges or objects.
On a different scale but in the same context it has been proposed that cooperation and
self-organization of autonomous agents in solving large-scale optimization problems
Parsopoulos and Vrahatis [2002] provide means for emergent computation of other-
wise intractable tasks. Thus, in the context of emergent computation, multi-agent
systems are found on many levels reaching from the micro-biology up to neural net-
works, software-agents, or whole Internet-based machines Organic Computing.

In practice many such approaches lack a mathematical treatment of their capa-
bilities to dynamically reach a task oriented and efficient configuration nor can any
kind of optimality be achieved. Below we use theory developed for the competitive-
layer model (CLM, Wersing, Steil, Ritter, Neural Computation 13, 357-387, 2001),
a recurrent linear threshold network for feature binding and sensory segmentation to
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Figure 1: AgentsAr communicate their action preference distribution variablesxrl to
others to check compatibility for forming a cooperating group.

give constructive conditions on the choice of the agents’ compatibility functions and
dynamical parameters such that a task oriented grouping of cooperating agent can be
guaranteed. It can even be shown that the resulting coalitions of agents are optimal
with respect to an energy function incorporating their mutual compatibilities and their
grade of specialization with respect to the given tasks.

The architecture is shown in Fig. 1 and consists of three elements: the task eval-
uation, the organization of inter-agent communication and inner-agent action winner-
take-all competition between the actions, and the action selection dynamics.

2 Task evaluation

Our architecture solves task assignment problems using a paradigm of cooperating
agents. We assume that each agent has to be assigned to one of a number ofN tasks
and can chose betweenL actions, however, with respect to mutual compatibility with
other agents and their choices. This framework has been inspired by the architecture
of the CLM neural network for perceptual grouping task, where – reinterpreted in the
framework presented here – every agents has a fixed assignment to a local feature
vector describing the task and the action is to signal presence or absence of a group.

Let N tasks described by feature vectorsTn be given to whichR agentsAr have
to be assigned. Each agentAr computes its task evaluation vector

tr = [µr(T1), ..., µr(TN )]
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Figure 2: Description of problem is feature vector of positions and filter answers.

which summarizes the agents information about the given tasks. In perceptual group-
ing for images segmentation typicallyTn is a local feature vector for each pixeln. If
we further assume thatR=N , i.e. there are as many agents as pixels, andµr = δrn,
then each agent is specialized to a certain pixel and all non-local information has to be
conveyed by the communication between agents. A corresponding example for con-
tour grouping has been realized and is shown in Fig. 2, where the partial description
of the problem is the feature vector of positions and edge filter answers.

We also propose a more general example of CPU assignment, where each agent
Ar may represent a CPU with certain resources, to which one or more tasksTN can be
assigned. Thenµr(TN ) can encode to which degree the task and the resources match,
consider e.g.. needs for memory, cache, processor speed etc. Details on this problems
yet have to be specified.

3 Competition and Communication

The main idea of our framework is to organize for each agentAr a dynamic decision
process for one ofL actions. The degree of certainty with whichAr decides for action
l is expressed by positive decision variablesxrl ≥ 0,

∑
l xrl = 1, which together for

the action preference distribution of agentAr. An unambiguous decision requires that
xrl̂ = 1, xrl′ = 0. Two mechanisms influence the dynamic development ofxrα: first,
an inner-agent competition between possible actions and, second, the evaluation of the
compatibility of the current action decision preference of agentAr with the decision
preference of other agentsAr′ by means of communicating their current states. The
latter introduces dynamically propagated knowledge about the overall global state of
the agent community.

Inner-agent competition: competition between actions ofAr is organized as
inner-agent winner-take-all WTA circuit which uses mutual symmetric inhibitory in-
teractions with strengthI ll′

r = I l′l
r > 0 between the assignment variablesxrl andxrl′ ,
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xrl ≥ 0 and the dynamically enforced (see (2) below) constraint
∑

l xrl = 1. The
largerI ll′

r the stronger is the mutual exclusion between actionsl andl′ and the faster
is the decision dynamics with respect to these two actions. The self-interactionIll

r can
further encode an a-priori preference distribution for the actions of agentAr.

Inter-agent communication: mutual influence between agents is evaluated with
respect to what degree the decision of agentAr is compatible to the decisions of agents
Ar′ . To this aim, for each agentAr and each actionl we assume a compatibility with
agentAr′ deciding for the same action with respect to the given tasks,

f l
rr′ = f l

rr′(tr, tr′)

wheref l
rr′ > 0 if the decision ofAr′ for l supports an decision ofAr for actionl and

vice versa. We additionally assume a small constant communication cost−k against
which the support is weighted.

At each time step all agents may communicate their internal statesxrl and collect
their total support/inhibition for actionsl:

F l
r =

∑
r′

(
f l

rr′(tr, tr′) − k
)
xr′l (1)

The functionf has to be specified problem specific. For grouping tasks, it typically
does not depend on the actionl because all actions just signal presence of a group and
the segmentation of the input into groups is achieved by coherent activation of groups
of the feature dependent agents. For contour grouping as shown in Fig. 2 we have

f l
rr′ = frr′ = f(tr, t′r) = f((x, y, θ)r, (x, y, θ)r′)

becauseµr((x, y, θ)n) = δrn(x, y, θ)n) always selects the feature vector of pixelr
for the pixel selective agentAr. For CPU assignment,f l

rr′ could, for instance, encode
how fast two machines are connected in the network. If fast network is important
for the task the weight must be positive if the machines are connected and strongly
negative otherwise.

In principle, the problem specific compatibility functionf must be specified by the
system designer. Methods to generate suitablef from labeled examples for grouping
tasks have been studied in Wersing [2001], Weng and Steil [2003], but the derivation
similar learning methods for the agent framework is beyond the scope of this paper.

4 Dynamic Action Selection

Next we formulate theaction assignment dynamics, which incorporates both the
local WTA-competition and the collection of support from other agents as

ẋrl = J(1 −
∑

l

xrl) +
∑
r′

(
f l

rr′(tr, tr′) − k
)
xr′l. (2)

The constantJ weights the competitive process against the influence of the support.
If we perform a synchronous update of all variables, the following specialized version
of Theorem 1 in Wersing et al. [2001] shows that a careful choice ofJ with respect to
f results in an unambiguous dynamic action selection for all agents.
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Figure 3: Realized contour segmentation (left) by grouping edges based on symmetry–
proximity evaluation of position and orientation. Proposed application to CPU assign-
ment (right) evaluates e.g. compatibility with local network.

Theorem 1 If krl > 0 with krl = I ll
r −f l

rr −
∑

r′ �=r max(0, frr′
l ), then the dynamics

(2) is bounded. If further f l
rr > 0 for all r, l, and the vertical interactions satisfy

I ll
r I l′l′

r ≤ (I ll′
r )2 for all l, l′ then an attractor of the dynamics (2) has for each agent

Ar either

i) at most one positive decision variable xrl̂ with

xrl̂ = J+Frl̂

I l̂l̂
r

, and xrl′ = 0 for all l′ �= l̂, where l̂ = l̂(r) is the index of the

maximally supported action characterized by Frl̂ > Frl′ for all l′ �= l̂, or

ii) all decision variables xrl, l = 1, . . . , L for agent Ar vanish.

The theorem guarantees that each attractor of the action selection dynamics leads
to an unambiguous decision of all agents for one of the possible actions or to execute
non of them (xrl = 0) because no action is compatible with the other agents decisions.
By choosing suitableIll′ andJ we can always ensure convergence to one of these
stable states.

5 Simulation and Application

The convergence result of Theorem 1 holds for the system of differential equations 2
when integrated synchronously in continuous time. For a true agent system, however,
the updates must be local and asynchronous. As well it is unrealistic to carry out the
full sum over the mutual compatibilities to compute the support (1). For practical ap-
plication, we have to assume a discrete and stochastic order of updates based on partial
information obtained by restricted communication only which closely approximates
the theoretically stable dynamics.

A suitable approximation for simulation is given by the following algorithm:1:
Initialize all xrl(t = 0) ∈ [1/L − ε, 1/L + ε],

1The algorithm was proposed by S. Weng in personal communication
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Initialize J := 1 + maxr,r′,l f
l
rr′

Choose (r, r′, l) at random and compute

ξ :=
(
J

(
1 − ∑

l′ �=l I
ll′
r xrl′

)
+ f l

rr′xr′l

)
/(1 − f l

rr)
update xrl := max(0, ξ) until convergence

From the point of view of the agentAr, this algorithm computes the compatibility
(its supportF l

r) based on receivingx′
rl from a single other agentAr′ then to update

the internal WTA circuit directly. In particular, the sum over allr′ in the differential
equation 2 is reduced to a single term and subsequently the right hand side is solved
for xrl under the assumptioṅxrl = 0. For carrying out the full support summation,
this asynchronous dynamics converges due to a convergence result on asynchronous
iteration in neural networks by Feng [1997]. The approximate iterative employment of
partial support turned out to work very well in practice in simulations, where we tried
to reproduce segmentation results obtained with the original neural CLM dynamics.
The outcome for the grouping example discussed above is shown in Fig. 3.

6 Conclusion

We present a flexible framework for the dynamic formation of cooperating groups of
agents to solve task assignments problems. It is based on two combined processes, an
inner-agent winner-takes-all competition between different actions and an inter-agent
communication, which allows the competition to be influenced by the tendency of
other agents to cooperate by means of selecting the same action. We reinterprete and
generalize the competitive layer model (CLM) to organize these dynamics and apply
theoretical results from Wersing et al. [2001] to give conditions for convergence to a
unique action selection for each agent. A stochastic asynchronous approximation of
this dynamics allows the local and parallel computation necessary for a true agent sys-
tem. Potential applications are widespread including perceptual grouping tasks (which
have been realized and to which also the CLM has successfully been applied) and more
general and symbolically specified problems as long as the task compatibility vector
µr and a suitable agent compatibility functionf l

rr′ can be specified. Ongoing work
aims at a concrete application in the CPU assignment domain.
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