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Abstract. This paper is based on a new way for determining the regularization
trade-off in least squares support vector machines (LS-SVMs) via a mechanism
of additive regularization which has been recently introduced in [6]. This frame-
work enables computational fusion of training and validation levels and allows
to train the model together with finding the regularization constants by solving a
single linear system at once. In this paper we show that this framework allows
to consider a penalized validation criterion that leads to sparse LS-SVMs. The
model, regularization constants and sparseness follow from a convex quadratic
program in this case.

Regularization has a rich history which dates back to the theory of inverse ill-posed
and ill-conditioned problems [12]. Regularized cost functions have been considered
e.g. in splines, multilayer perceptrons, regularization networks [7], support vector
machines (SVM) and related methods (see e.g. [5]). SVM [13] is a powerful method-
ology for solving problems in nonlinear classification, function estimation and den-
sity estimation which has also led to many other recent developments in kernel based
learning methods in general [8]. SVMs have been introduced within the context of
statistical learning theory and structural risk minimization. In the methods one solves
convex optimization problems, typically quadratic programs. Least Squares Support
Vector Machines (LS-SVMs) [9, 10] are reformulations to standard SVMs which lead
to solving linear KKT systems for classification tasks as well as regression and primal-
dual LS-SVM formulations have been given for kFDA, kPCA, kCCA, kPLS, recurrent
networks and control [10]. The relative importance between the smoothness of the
solution and the norm of the residuals in the cost function involves a tuning param-
eter, usually called the regularization constant. The determination of regularization
constants is important in order to achieve good generalization performance with the
trained model and is an important problem in statistics and learning theory [5, 8, 11].
Several model selection criteria have been proposed in literature to tune the model to
the data. In this paper, the performance on an independent validation dataset is con-
sidered. The optimization of the regularization constant in LS-SVMs with respect to
this criterion proves to be non-convex in general. In order to overcome this difficulty,
a reparameterization of the regularization trade-off has been recently introduced in
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[6] referred to as additive regularization (AReg). The combination of model training
equations of the AReg LS-SVM and the validation minimization leads to one convex
system of linear equations from which the model parameters and the regularization
constants follow at once. In order to explicitly restrict the degrees of freedom of the
additive regularization constants, a penalizing term is introduced here at the validation
level leading to sparse solutions of AReg LS-SVMs with parameter tuning by solving
a convex quadratic program.

In Section 1 the formulation of LS-SVMs and additive regularization are briefly
reviewed. Section 2 discusses a criterion for tuning of the regularization constants
leading to a sparse solution. In Section 4 a number of experiments on regression as
well as classification tasks are given.

1 Model Training

Let {xi, yi}N
i=1 ⊂ R

d ×R be the training data with inputs xi and outputs yi. Consider
the regression model yi = f(xi)+ei where x1, . . . , xN are deterministic points (fixed
design), f : R

d → R is an unknown real-valued smooth function and e 1, . . . , eN

are uncorrelated random errors with E [e i] = 0, E
[
e2

i

]
= σ2

e < ∞. The n data
points of the validation set are denoted as {xv

j , y
v
j }n

j=1. In the case of classification,
y, yv ∈ {−1, 1}.

1.1 Least Squares Support Vector Machines

The LS-SVM model is given as f(x) = wT ϕ(x) + b in the primal space where
ϕ(·) : R

d → R
nh denotes the potentially infinite (nh = ∞) dimensional feature map.

The regularized least squares cost function is given by [10]

min
w,b,ei

Jγ(w, e) =
1
2
wT w+

γ

2

N∑
i=1

e2
i s.t. wT ϕ(xi)+b+ei = yi, ∀i = 1, ..., N (1)

Note that the regularization constant γ appears here as in classical Tikhonov reg-
ularization [12]. The Lagrangian of the constraint optimization problem becomes
Lγ(w, b, ei; αi) = 0.5wT w+0.5γ

∑N
i=1 e2

i −
∑N

i=1 αi(wT xi+b+ei−yi). By taking
the conditions for optimality ∂Lγ/∂αi = ∂Lγ/∂b = ∂Lγ/∂ei = 0 and application
of the kernel trick K(xi, xj) = ϕ(xi)T ϕ(xj) with a positive definite (Mercer) kernel
K , one gets eiγ = αi, w =

∑N
i=1 αiϕ(xi),

∑N
i=1 αi = 0 and wT ϕ(xi)+b+ei = yi.

The dual problem is given by
[

0 1T
N

1N Ω + IN/γ

] [
b
α

]
=

[
0
y

]
(2)

where Ω ∈ R
N×N with Ωij = K(xi, xj). The estimated function f̂ can be evaluated

at a new point x∗ by f̂(x∗) =
∑N

i=1 αiK(xi, x
∗) + b. Optimization of the optimal γ
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with respect to the validation performance in the regression case can be written as

min
γ

n∑
j=1

(yv
j − f̂γ(xv

j ))2 =
n∑

j=1

(
yv

j −
[

1
Ωv

]T [
0 1T

N

1N Ω + IN/γ

]−1 [
0
y

] )2

(3)
where Ωv ∈ R

n×N with Ωv
ij = K(xi, x

v
j ). The determination of γ becomes a non-

convex optimization problem which is often also non-smooth such as in the case of
cross-validation methods. For the choice of the kernel K(·, ·), see e.g. [2, 8, 3].
Typical examples are the use of a linear kernel K(x i, xj) = xT

i xj or the RBF kernel
K(xi, xj) = exp(−‖xi − xj‖2

2/σ2) where σ denotes the bandwidth of the kernel.
A derivation of LS-SVMs was given originally for the classification task [9]. The

LS-SVM classifier f(x) = sign(ϕ(x)T w + b) is optimized with respect to

min
w,b,ei

Jγ(w, e) =
1
2
wT w+

γ

2

N∑
i=1

e2
i s.t. yi(wT ϕ(xi)+b) = 1−ei, ∀i = 1, . . . , N.

(4)
Using a primal dual optimization interpretation, the unknowns α, b of the estimated
classifier f̂(x) = sign(

∑N
i=1 αiyiK(xi, x) + b) are found by solving the dual set of

linear equations [
0 yT

y Ωy + IN/γ

] [
b
α

]
=

[
0

1N

]
(5)

where Ωy ∈ R
N×N with Ωy

ij = yiyjK(xi, xj). The remainder focuses on the re-
gression case, although it is applicable just as well to the classification problem as
illustrated in the experiments [6].

1.2 LS-SVMs with additive regularization

An alternative way to parameterize the regularization trade-off associated with the
model f(x) = wT ϕ(x) + b is by means of the vector c [6]:

min
w,b,ei

Jc(w, e) =
1
2
wT w+

1
2

N∑
i=1

(ei−ci)2 s.t. wT ϕ(xi)+b+ei = yi ∀i = 1, . . .N

(6)
where the elements of the vector c serve as tuning parameters, called the additive
regularization constants. After constructing the Lagrangian with multipliers α and
taking the conditions for optimality w.r.t. w, b, e i, αi (being ei = ci + αi, w =∑N

i=1 αiϕ(xi),
∑N

i=1 αi = 0 and wT ϕ(xi) + b + ei = yi), the following dual linear
system is obtained

[
0 1T

N

1N Ω + IN

] [
b
α

]
+

[
0
c

]
=

[
0
y

]
. (7)

Note that at this point the value of c is not considered as an unknown to the opti-
mization problem: once c is fixed, the solution of α, b is uniquely determined. The
estimated function f̂ can be evaluated at a new point x∗ by f̂(x∗) = wT ϕ(x∗) + b =
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∑N
i=1 αiK(xi, x

∗) + b. The residual f̂(xv
j ) − yv

j is denoted by ev
j such that one can

write

yv
j = wT ϕ(xv

j ) + b + ev
j =

N∑
i=1

αiK(xi, x
v
j ) + b + ev

j . (8)

We refer to this model as AReg LS-SVM. By comparison of (5) and (7), LS-SVMs
with Tikhonov regularization can be seen as a special case of AReg LS-SVMs with
the following additional constraint on α, c, γ

γ−1α = α + c s.t. 0 ≤ γ−1. (9)

This means that solution to AReg LS-SVMs are also solutions to LS-SVMs whenever
the support values α are proportional to the residuals e = α + c.

2 Regularization determination for AReg LS-SVM

2.1 Fusion of additive regularization and validation

By combination of the training conditions (7) and validation equalities (8), a set of
equations is obtained in the unknowns α, b, c and ev , summarized in matrix notation
as 

 0T
N 0T

n 0 1T
N

IN 0N×n 1N Ω + IN

0n×N In 1n Ωv







c
ev

b
α


 =


 0

y
yv


 . (10)

We refer to this principle as fusion of the training and the validation. Equation (3)
can also be seen as an appearance of fusion of training and validation as (3) is equiv-
alent to minimizing ‖ev‖ in (8) fused to (7) and (9). Different schemes for finding a
‘best’ among the many candidate solutions of the underdetermined system (10) can be
considered, e.g.

min
α,b,c,ev

‖e‖2
2 + ‖ev‖2

2 s.t. (10) holds (11)

where e = α + c. This criterion can be motivated by the assumption that e i as well as
ev

j are independently sampled from the same distribution. The criterion (11) leads to
the unique solution with the following constrained least squares problem

∥∥∥∥
[

1N Ω
1N Ωv

] [
b
α

]
−

[
y
yv

]∥∥∥∥
2

2

s.t. 1T
Nα = 0. (12)

Straightforward application of the criterion (11) should be avoided when the number
of training data exceeds the number of validation points as overfitting will occur on
the validation data as shown in [6]. One can overcome this problem in various way by
confining the space of possible c values [6].
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SVM LS-SVM Sparse AReg LS-SVM
Perf Sparse Perf Perf Sparse

Sinc 0.0052 68% 0.0045 0.0034 9%
Motorcycle 516.41 83% 444.64 469.93 11%

Ripley 90.10% 33.60% 90.40% 90.50% 4.80%
Pima 73.33% 43% 72.33% 74% 9%

Table 1: Performances of SVMs, LS-SVMs and Sparse LS-SVMs expressed in Mean
Squared Error (MSE) on a test set in the case of regression or Percentage Correctly
Classified (PCC) in the case of classification. Sparseness is expressed in percentage
of support vectors w.r.t. number of training data.

2.2 Penalized model selection leading to sparseness

The effective degrees of freedom of the c-space can be restricted by imposing a norm
on the solution of the final model [12, 13, 10]. The 1-norm is considered

min
α,b,c,ev

‖e‖2
2 + ‖ev‖2

2 + ξ‖e − c‖1 s.t. (10) holds. (13)

This criterion leads to sparseness as ‖e − c‖1 = ‖α‖1. Equivalently using (12):

∥∥∥∥
[

1N Ω
1n Ωv

] [
b
α

]
−

[
y
yv

]∥∥∥∥
2

2

+ ξ‖α‖1 s.t. 1T
Nα = 0. (14)

This is a convex quadratic programming problem. The tuning parameter ξ determines
the relative importance of the model (validation) fit and the 1-norm (and thus the
sparseness) of the solution α. We refer to this method as Sparse AReg LS-SVMs.

3 Experiments

The performance of the proposed Sparse AReg LS-SVM was measured on a number
of regression and classification datasets, respectively an artificial dataset sinc (gen-
erated as X = sinc(X) + e with e ∼ N (0, 0.1) and N = 100, d = 1) and the
motorcycle dataset [4] (N = 100, d = 1) for regression, the artificial Ripley dataset
(N = 250, d = 2) and the PIMA dataset (N = 468, d = 8) from UCI for classifi-
cation. The models resulting from Sparse AReg LS-SVMs were tested against SVMs
and LS-SVMs where the kernel parameters and the other tuning-parameters (respec-
tively C, ε for the SVM, γ for the LS-SVM and ξ for the Sparse Areg LS-SVM) were
obtained from 10-fold cross-validation (see table 1). Some conclusions that can be
made from these experiments are that the performance of Sparse Areg LS-SVMs is
comparable to LS-SVMs, is better than for the standard SVM especially in the re-
gression case and the degree of sparseness is significantly larger than for the standard
SVM.
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4 Conclusions

This paper introduced a way to obtain sparseness of LS-SVMs with additive regu-
larization by considering a penalized validation criterion. The fusion of the AReg
LS-SVM training and regularization parameter tuning leads to a convex optimization
problem from which the regularization and training parameters follow at once.
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